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Introduction

Given (M, g) a smooth compact n-dimensional Riemannian manifold, one easily defines the
Sobolev spaces Hp

k(M), following what is done in the more traditionnal Euclidean context. For
instance, when k = 1, and p = 2, one may define the Sobolev space H2

1 (M) as follows: for
u ∈ C∞(M), we let

‖u‖2
H2

1
= ‖u‖2

2 + ‖∇u‖2
2

where ‖.‖p is the Lp-norm with respect to the Riemannian measure dvg. We then define H2
1 (M)

as the completion of C∞(M) with respect to ‖.‖H2
1
. Very useful properties of H2

1 (more generally

of Hp
1 , p ≥ 1) are that Lipschitz functions on M do belong to the Sobolev space H2

1 (M), and
that if u ∈ H2

1 (M), then |u| ∈ H2
1 (M) and |∇|u|| = |∇u| almost everywhere.

As for bounded open subsets of the Euclidean space, the Sobolev embedding theorem (con-
tinuous embeddings), and the Rellich-Kondrakov theorem (compact embeddings), do hold.
Assume that n ≥ 3, and let 2⋆ = 2n

n−2
be the critical Sobolev exponent. Then for any p ∈ [1, 2⋆],

H2
1 (M) ⊂ Lp(M) and this embedding is continuous, with the property that it is also com-

pact if p < 2⋆. The Sobolev inequality corresponding to the critical continuous embedding
H2

1 (M) ⊂ L2⋆
(M) can be written as follows: for any u ∈ H2

1 (M),

‖u‖2
2⋆ ≤ A1‖∇u‖2

2 +B1‖u‖2
2 (0.1)

where A1 and B1 are positive constants independent of u, but that may depend on the manifold.
Another very useful inequality, closely related to the Sobolev inequality, is the so-called Poincaré
inequality. In the particular case of the H2

1 -Sobolev space, the Poincaré inequality reduces to
the Rayleigh characterization of the first nonzero eigenvalue of the Laplacian: there exists a
positive constant A2 such that for any u ∈ H2

1 (M),

‖u− u‖2
2 ≤ A2‖∇u‖2

2 (0.2)

where u = V −1
g

∫

M udvg is the average of u, and Vg the volume of M with respect to g. In
particular, it easily follows from (0.2) that for any u ∈ H2

1 (M),

‖u‖2
2 ≤ A3‖∇u‖2

2 +B3‖u‖2
1 (0.3)

where A3 and B3 are positive constants independent of u, but that may depend on the manifold.
Such an inequality appeared first in the Courant and Hilbert monograph [9]. Combining (0.1)
and (0.3), we do get that there exist positive constants A and B such that for any u ∈ H2

1 (M),

‖u‖2
2⋆ ≤ A‖∇u‖2

2 +B‖u‖2
1 (0.4)

This inequality was considered in Nirenberg [31]. We refer to this inequality as the Sobolev-
Poincaré inequality.

These notes are devoted to the study of the sharp form of (0.4) with respect to the first
constant. They are both a combination of a series of three papers by Druet-Hebey [18], Druet-
Hebey-Vaugon [19] and Hebey [25], and an expended version of a series of lectures given by
the author at various places like the university of Texas at Austin, Princeton university, the
university of British Columbia, and the scuola normale superiore di Pisa. New results are also
presented. The author wishes to express his gratitude to the above institutions for their warm
hospitality.
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1 Few words on the Euclidean space

It is known since the work of Sobolev [37] that there exists a positive constant K such that for
any u ∈ C∞

0 (IRn), the space of smooth functions with compact support in IRn,

‖u‖2
2⋆ ≤ K‖∇u‖2

2 (1.1)

More direct arguments were later on discovered in independent works by Gagliardo [21] and
Nirenberg [31]. These different approaches of Gagliardo, Nirenberg, and Sobolev do not give
the value of the best constant K in (1.1). A discussion of the sharp form of (1.1) restricted to
the case n = 3 appeared first in Rosen [35]. Then we find independent works by Aubin [3] and
Talenti [38] where the sharp form of (1.1) is given. If Kn stands for the best constant in (1.1),
it was shown by these authors that

Kn =
4

n(n− 2)ω
2/n
n

where ωn is the volume of the unit n-sphere. The sharp Sobolev inequality then reads as

‖u‖2
2⋆ ≤ Kn‖∇u‖2

2 (1.2)

and it is easily seen that equality holds in (1.2) if u has the form

u =
(

λ+ |x− x0|2
)1−n

2 (1.3)

where λ is any positive constant and x0 is any point in IRn. Both the approaches in [3] and
[38] were based on previous work by Bliss [5] where Kn was computed for radially symmetric
functions. By standard Morse theory, it suffices to prove (1.2) for continuous nonnegative
functions u with compact support Ω, Ω being itself smooth, u being smooth in Ω and such
that it has only nondegenerate critical points in Ω. For such an u, let u⋆ : IRn → IR, radially
symmetric, nonnegative, and decreasing in |x| be defined by

V olδ ({x ∈ IRn, u⋆(x) ≥ t}) = V olδ ({x ∈ IRn, u(x) ≥ t})

where δ stands for the Euclidean metric, and V olδX for the Euclidean volume of X. It is easily
seen that u⋆ has compact support and is Lipschitz. Moreover, the co-area formula gives that
for any m ≥ 1,

∫

IR
n
|∇u|mdx ≥

∫

IR
n
|∇u⋆|mdx

and ∫

IR
n
|u|mdx =

∫

IR
n
|u⋆|mdx

It follows that it suffices to prove (1.2) for decreasing absolutely continuous radially symmetric
functions which equal zero at infinity, and we are back to the Bliss argument.
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2 Sharp Sobolev-Poincaré inequalities - The questions

Mimicking what has been done for the standard Sobolev inequality, see Hebey [24] and Druet-
Hebey [17] for expositions in book form, the goal in these notes is to discuss the sharp form of
(0.4) with respect to its first constant. Given (M, g) smooth, compact, of dimension n ≥ 3, we
define the sharp constant As(M) in (0.4) by

As(M) = inf
{

A s.t. ∃B for which (0.4) holds with A and B
}

where, by saying that (0.4) holds with A and B, we mean that (0.4) holds with A and B for
all functions u ∈ H2

1 (M). The first question to consider is whether or not we can compute
the value of As(M). It turns out that the answer to this question is simple and follows from
local comparison arguments with the Euclidean metric. More precisely, we will return to these
statements in section 5, it is easily seen that the two following propositions hold:

(1) any constant A in (0.4), whatever B and the manifold (M, g) are, has to be such that
A ≥ Kn, and

(2) for any (M, g), and any ε > 0, there exists Bε > 0 such that (0.4) holds with A = Kn +ε
and B = Bε.

In other words, (2) says that for any smooth compact Riemannian manifold (M, g) of dimension
n ≥ 3, and for any ε > 0, there exists a positive constant Bε such that for any u ∈ H2

1 (M),

‖u‖2
2⋆ ≤ (Kn + ε) ‖∇u‖2

2 +Bε‖u‖2
1 (2.1)

It clearly follows from (1) that As(M) ≥ Kn. It clearly follows from (2) that As(M) ≤ Kn + ε
for all ε > 0. Hence, (1) and (2) give that for any smooth compact Riemannian manifold (M, g)
of dimension n ≥ 3, As(M) = Kn. In particular, As(M) does not depend on the manifold.
This is not anymore the case for Bε. Taking u ≡ 1 in (2.1), it is easily seen that Bε ≥ V −(n+2)/n

g

where Vg is the volume of M with respect to g. In particular, Bε has to depend on the manifold.

Now we consider what we refer to as the sharp Sobolev-Poincaré inequality. Given (M, g)
a smooth compact Riemannian manifold of dimension n ≥ 3, we say that the sharp Sobolev-
Poincaré inequality is true on (M, g) if there exists a positive constant B such that for any
u ∈ H2

1 (M),
‖u‖2

2⋆ ≤ Kn‖∇u‖2
2 +B‖u‖2

1 (2.2)

Depending on the manifold, (2.2) may be true, or may not be true. The first question we ask
is the following:

Question 1: Given a smooth compact Riemannian manifold (M, g) of dimension n ≥ 3, is
(2.2) true on (M, g) ?

If this is the case, a similar statement is that As(M) is attained in (0.4), or also that we can
take ε = 0 in (2.1). Now we distinguish two cases, depending on whether question 1 receives a
positive answer or not.

In the first case, we assume that the manifold we consider is such that (2.2) is true. Then
we can saturate (2.2) with respect to the remaining constant B. More precisely, when (2.2) is
true, we define B0(g) by

B0(g) = inf
{

B s.t. (2.2) is true
}
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In other words, we define B0(g) as the smallest constant B in (2.2). Then we get for free that
for any u ∈ H2

1 (M),
‖u‖2

2⋆ ≤ Kn‖∇u‖2
2 +B0(g)‖u‖2

1 (2.3)

We refer to (2.3) as the saturated form of the sharp inequality (2.2). Taking u ≡ 1 in (2.3),
it is easily seen that B0(g) ≥ V −(n+2)/n

g . In particular, when it exists, B0(g) depends on the
manifold. When (2.3) is true we can define the notion of an extremal function. We say that a
nonzero function u0 ∈ H2

1 (M) is an extremal function for (2.3) if

‖u0‖2
2⋆ = Kn‖∇u0‖2

2 +B0(g)‖u0‖2
1

In other words, we say that a nonzero function u0 ∈ H2
1 (M) is an extremal function for (2.3) if

it realizes the equality in (2.3). Then the second question we ask is the following:

Question 2: Assuming that (2.2) is true, does there exist extremal functions for (2.3) ?

In the second case, we assume that the manifold we consider is such that (2.2) is false. In other
words, we assume that for any B > 0, there exists u ∈ H2

1 (M) which contradicts (2.2). Then
we cannot define anymore the notion of an extremal function. However, coming back to the
asymptotically sharp inequality (2.1), we can saturate Bε. Let Bε(g) be the smallest Bε in (2.1)
given by

Bε(g) = inf
{

Bε s.t. (2.1) is true
}

Then we get for free that for any u ∈ H2
1 (M),

‖u‖2
2⋆ ≤ (Kn + ε) ‖∇u‖2

2 +Bε(g)‖u‖2
1 (2.4)

Since (2.2) is false, we know that Bε(g) → +∞ as ε → 0. The third and last question we ask
is the following:

Question 3: Assuming that (2.2) is false, what is the asymptotic behavior of Bε(g) as ε goes
to 0 ?

The answers to these three questions involve the dimension and the geometry. Concerning the
effect of geometry, we need few words on the Cartan-Hadamard conjecture. This is the subject
of the following section.

3 The Cartan-Hadamard conjecture

By definition a Cartan-Hadamard manifold is a complete simply-connected Riemannian man-
ifold of nonpositive sectional curvature. The name of a Cartan-Hadamard manifold comes
form the so-called Cartan-Hadamard theorem asserting that for any x in a complete Rieman-
nian manifold of nonpositive sectional curvature, the exponential map expx is a covering. In
particular, the exponential map expx realizes a diffeomorphism from IRn onto M̃ if M̃ is simply-
connected.

Let (M̃, g̃) be a Cartan-Hadamard manifold of dimension n. The n-dimensional Cartan-
Hadamard conjecture states that for any smooth bounded domain Ω in M̃ ,

|∂Ω|g̃
|Ω|(n−1)/n

g̃

≥ n
(

ωn−1

n

) 1
n

(3.1)
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where |∂Ω|g̃ is the volume of ∂Ω with respect to the metric induced by g̃, |Ω|g̃ is the volume of
Ω with respect to g̃, and ωn−1 is the volume of the unit (n−1)-sphere. Such an inequality holds
on the Euclidean space. Moreover, still for the Euclidean space, equality holds if and only if Ω
is a ball. Another formulation of the Cartan-Hadamard conjecture is that the sharp Euclidean
isoperimetric inequality continues to be true for Cartan-Hadamard manifolds.

The Cartan-Hadamard conjecture is proved to be true in dimension 2 by Weil [39], in
dimension 3 by Kleiner [29], and in dimension 4 by Croke [10]. Croke’s argument, based on
Santalo’s formula, is perharps the most surprising. Croke gets explicit Euclidean-type generic
Sobolev inequalities for all n ≥ 3, with the property that one recovers (3.1) only when n = 4.
For n ≥ 3, let

C(n) =
ωn−2

n−2

ωn−1
n−1

( ∫ π/2

0
cosn/(n−2)(t) sinn−2(t)dt

)n−2

Croke’s result [10] is that for any smooth bounded domain Ω in M̃ ,

|∂Ω|g̃
|Ω|(n−1)/n

g̃

≥ 1

C(n)
1
n

Noting that C(n) is sharp when n = 4, it follows that (3.1) is true for any 4-dimensional
Cartan-Hadamard manifold.

As far as we know, the Cartan-Hadamard conjecture is open when n ≥ 5. However, the sharp
isoperimetric inequality (3.1) is basically understood for small domains and for large domains.
By Yau [40] we indeed have that if (M̃, g̃) is a Cartan-Hadamard manifold of dimension n, with
sectional curvature less than K < 0, then for any smooth bounded domain Ω in M̃ ,

|∂Ω|g̃ ≥ (n− 1)
√
−K|Ω|g̃

Hence, for such manifolds, (3.1) is true provided that the volume of Ω is sufficiently large. On
the other hand, thanks to the recent Druet [14] and Johnson and Morgan [28], we also have
curvature conditions which ensure that (3.1) is true if the diameter of Ω is sufficiently small.
We refer to these references for more details.

4 Sharp Sobolev-Poincaré inequalities - The results

We return to the sharp Sobolev-Poincaré inequality and to the questions we asked. We start
with the first question we asked of whether or not the sharp Sobolev-Poincaré inequality (2.2)
is true. A first answer to this question is the following, extracted from Druet-Hebey-Vaugon
[19] and Hebey [25].

Theorem 4.1 (Extracted from [19] and [25]) The sharp Sobolev-Poincaré inequality (2.2)
is true on any smooth compact Riemannian 3-manifold. When n ≥ 4, (2.2) is still true on any
smooth compact Riemannian n-manifold of negative scalar curvature, but (2.2) is false when
the scalar curvature of the manifold is positive somewhere.
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This first result clearly illustrates the influence of the dimension and the geometry when
studying the sharp Sobolev-Poincaré inequality. When n = 3, dimension wins and (2.2) is
always true without any kind of assumption on the manifold. When n ≥ 4, geometry wins
and (2.2) is sometimes true and sometimes false, depending on the sign of the scalar curvature.
Both phenomena are somehow surprising. For instance, if we consider the standard Sobolev
inequality, in other words if we replace in (0.4) the square of the L1-norm of u by the square of
the L2-norm of u, then, as it was shown by Hebey and Vaugon [27], the corresponding sharp
inequality is always true.

Still concerning the first question we asked, a natural additional question to ask with respect
to Theorem 4.1 is whether or not (2.2) is still true if we push the curvature from negative values
to nonpositive values. In other words, an additional natural question to ask is:

Question 1′: Is (2.2) true on manifolds of nonpositive curvature ?

It turns out rather quickly that the scalar curvature does not control anymore the situation in
this critical limit case. We need more geometric information. This is a typical situation where
the Cartan-Hadamard conjecture plays a role. The answer to this question we just asked is
given by the following result. It is once more extracted from Druet-Hebey-Vaugon [19] and
Hebey [25].

Theorem 4.2 (Extracted from [19] and [25]) The sharp Sobolev-Poincaré inequality (2.2)
is true on any smooth compact Riemannian n-manifold, n ≥ 4, of nonpositive sectional cur-
vature if the n-dimensional Cartan-Hadamard conjecture is true. The sharp Sobolev-Poincaré
inequality (2.2) is also true on any smooth compact conformally flat Riemannian n-manifold,
n ≥ 4, of nonpositive scalar curvature. On the other hand, (2.2) is false if n ≥ 6, the manifold
is not conformally flat and the scalar curvature is zero around one nonconformally flat point.

Since the 4-dimensional Cartan-Hadamard conjecture is true, it follows from the first part
of this theorem that the sharp Sobolev-Poincaré inequality (2.2) is true on any smooth compact
Riemannian 4-manifold of nonpositive sectional curvature.

By definition, a Riemannian manifold (M, g) is said to be conformally flat if, up to conformal
changes of the metric, we do get local isometries with the Euclidean space. When n ≥ 4, which
is the case in Theorem 4.2, this amounts to say that the Weyl curvature tensor is zero. When
this is not the case, we refer to nonconformally flat points as points where the Weyl curvature
tensor is not zero.

Theorem 4.2 clearly illustrates the idea that we need more geometric informations when
pushing the curvature from negative values to nonpositive values. This is clear in the first part
of the theorem where we do need the Cartan-Hadamard conjecture. This is also clear in the
second and third parts of the theorem. According to the second part we can push the scalar
curvature from negative values to nonpositive values when the manifold is conformally flat.
According to the third part, at least when n ≥ 6, there is no hope that (2.2) is true under the
only assumption that the scalar curvature is nonpositive.

A simple corollary to the third part of the theorem is the following rigidity type result.
Similar phenomena were observed for the standard Sobolev inequalities by Druet [12] in the
compact setting, and by Ledoux [30] in the complete setting.
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Corollary 4.1 Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 6 and
nonnegative Ricci curvature. If (2.2) is true on (M, g), then g is flat and M is covered by a
torus.

Theorem 4.2 leaves open the question of whether or not (2.2) is true on manifolds of non-
positive scalar curvature and dimensions 4 and 5 (the 3-dimensional case is settled in Theorem
4.1). The following result answers this question.

Theorem 4.3 (Extracted from [16]) The sharp Sobolev-Poincaré inequality (2.2) is true on
any smooth compact Riemannian n-manifold, n = 4, 5, of nonpositive scalar curvature.

Thanks to this theorem, and thanks to Theorems 4.1 and 4.2, we thus face the following
situation:

(1) When n = 3, (2.2) is true without any assumption on the scalar curvature ;
(2) When n = 4, 5, (2.2) is true if the scalar curvature is nonpositive ;
(3) When n ≥ 6, (2.2) is true if the scalar curvature is nonpositive and the manifold is

conformally flat, but there are in any dimensions n ≥ 6 examples of non conformally flat
manifolds of nonpositive scalar curvature for which (2.2) is false.

In particular, corollary 4.1 is false in dimension 3 (thanks to Theorem 4.1), and in dimensions
4 and 5 (thanks to Theorem 4.3).

Theorems 4.1, 4.2 and 4.3 answer the first question we asked in section 2. We are now left
with the second and third questions. Namely with the question of the existence of extremal
functions for (2.3) when (2.2) is true, and with the question of the asymptotic behavior of (2.4)
when (2.2) is false. Thanks to Theorem 4.1 we know that (2.2) is true if the scalar curvature
Sg is everywhere negative, and that (2.2) is false if Sg is positive somewhere. The following
result, extracted from Druet-Hebey [18] and Hebey [25], answers questions 2 and 3, providing,
together with Theorems 4.1, 4.2 and 4.3, a rather complete picture in the study of the sharp
Sobolev-Poincaré inequality on compact Riemannian manifolds.

Theorem 4.4 (Extracted from [18] and [25]) The saturated inequality (2.3) possesses ex-
tremal functions on any smooth compact Riemannian n-manifold, n ≥ 4, of negative scalar
curvature. On the other hand, if (M, g) is a smooth compact Riemannian n-manifold, n ≥ 4,
whose scalar curvature Sg is positive somewhere, then

Bε(g) = C(n)
(

max
M

Sg

)
n+2

2

ε−
(n−4)(n+2)

2(n−2) + o
(

ε−
(n−4)(n+2)

2(n−2)

)

where C(n) > 0 depending only on n is explicitly known, and where ε−(n−4)/2 has to be under-
stood as | ln ε| when n = 4.

The constant C(n) in this theorem is given by the following expressions. When n = 4 we
find that C(4) = K4

2304ω3
, and when n ≥ 5, we find that

C(n) =
2n(n+ 2)ω

2+ 4
n

n K
n2−12
2(n−2)
n

(4n−3n(n− 2)(n− 4))
n+2
n−2 ω

2n
n−2

n−1

9



In particular, it follows from the second part of the theorem that for any C > C(n), there exists
ε0 > 0 such that for any ε ∈ (0, ε0), and any u ∈ H2

1 (M),

‖u‖2
2⋆ ≤ (Kn + ε) ‖∇u‖2

2 + C
(

max
M

Sg

)3

|ln ε|3 ‖u‖2
1

when n = 4, and

‖u‖2
2⋆ ≤ (Kn + ε) ‖∇u‖2

2 +
C (maxM Sg)

n+2
2

ε
(n−4)(n+2)

2(n−2)

‖u‖2
1

when n ≥ 5. The rest of these notes is devoted to the proofs of these results. We follow
the original references Druet-Hebey [18], Druet-Hebey-Vaugon [19], and Hebey [25]. In some
places, slightly simplier arguments exist thanks to the more recent Druet [14] or Johnson and
Morgan [28].

5 Value of the sharp constant

We return to propositions (1) and (2) of section 2, and prove these two propositions. Concerning
(1) we may proceed by contradiction. Suppose that there exist a Riemannian n-manifold (M, g)
and real numbers A < Kn and B, such that for any u ∈ H2

1 (M),

(
∫

M
|u|2⋆

dvg

)2/2⋆

≤ A
∫

M
|∇u|2dvg +B

(
∫

M
|u|dvg

)2

(5.1)

Let x ∈M . It is easy to see that for any ε > 0 there exists a chart (Ω, ϕ) of M at x, and there
exists δ > 0 such that ϕ(Ω) = B0(δ), the Euclidean ball of center 0 and radius δ in IRn, and
such that the components gij of g in this chart satisfy

(1 − ε)δij ≤ gij ≤ (1 + ε)δij

as bilinear forms. Choosing ε small enough we then get by (5.1) that there exist δ0 > 0,
A′ < Kn, and B′ ∈ IR such that for any δ ∈ (0, δ0) and any u ∈ C∞

0 (B0(δ)),

(∫

IR
n
|u|2⋆

dx
)2/2⋆

≤ A′
∫

IR
n
|∇u|2dx+B′

(∫

IR
n
|u|dx

)2

By Hölder,
(

∫

B0(δ)
|u|dx

)2

≤ |B0(δ)|(n+2)/n

(

∫

B0(δ)
|u|2⋆

dx

)2/2⋆

where |B0(δ)| denotes the Euclidean volume of B0(δ). Choosing δ small enough, it follows that
there exist δ > 0 and A′′ < Kn such that for any u ∈ C∞

0 (B0(δ)),

(∫

IR
n
|u|2⋆

dx
)2/2⋆

≤ A′′
∫

IR
n
|∇u|2dx

Let u ∈ C∞
0 (IRn). Set uλ(x) = u(λx), λ > 0. For λ large enough, uλ ∈ C∞

0 (B0(δ)). Hence,

(∫

IR
n
|uλ|2

⋆

dx
)2/2⋆

≤ A′′
∫

IR
n
|∇uλ|2dx (5.2)

10



But ∫

IR
n
|uλ|2

⋆

dx = λ−n
∫

IR
n
|u|2⋆

dx

while ∫

IR
n
|∇uλ|2dx = λ2−n

∫

IR
n
|∇u|2dx

so that (5.2) implies that

(
∫

IR
n
|u|2⋆

dx
)2/2⋆

≤ A′′
∫

IR
n
|∇u|2dx

for all u ∈ C∞
0 (IRn). Since A′′ < Kn, such an inequality is in contradiction with what we said

for the Euclidean space. By contradiction, we have proved that any constant A in (0.4) has to
be such that A ≥ Kn. This proves (1).

Concerning (2), we proceed as follows. We fix ε > 0 and let x ∈ M . For any t > 0 there
exists a chart (Ω, ϕ) at x such that the components gij of g in this chart satisfy

1

1 + t
δij ≤ gij ≤ (1 + t)δij

as bilinear forms. Thanks to the sharp Euclidean Sobolev inequality (1.2), choosing t > 0
sufficiently small, we can assume that for any smooth function u with compact support in Ω,

(∫

M
|u|2⋆

dvg

)2/2⋆

≤
(

Kn +
ε

2

) ∫

M
|∇u|2dvg (5.3)

Since M is compact, it can be covered by a finite number of such charts (Ωi, ϕi), i = 1, . . . , N .
We let (αi)i=1,...,N be a smooth partition of unity subordinate to the covering (Ωi)i=1,...,N , and
set

ηi =
α2

i
∑

j α
2
j

Then
√
ηi is smooth with compact support in Ωi, and (ηi)i=1,...,N is a smooth partition of unity

subordinate to the covering (Ωi)i=1,...,N . For u ∈ C∞(M), we write that

‖u‖2
2⋆ = ‖u2‖2⋆/2 = ‖

∑

ηiu
2‖2⋆/2 ≤

∑

‖ηiu
2‖2⋆/2 =

∑

‖√ηiu‖2
2⋆

Coming back to (5.3), it follows that

(∫

M
|u|2⋆

dvg

)2/2⋆

≤
(

Kn +
ε

2

) N
∑

i=1

∫

M
(
√
ηi|∇u| + |∇√

ηi||u|)2 dvg

=
(

Kn +
ε

2

) N
∑

i=1

∫

M

(

ηi|∇u|2 + 2|∇√
ηi|

√
ηi|u||∇u|+ |∇√

ηi|2u2
)

dvg

Writing that for any λ > 0,

2|∇u||u| ≤ λ|∇u|2 +
1

λ
u2

11



it follows that

(∫

M
|u|2⋆

dvg

)2/2⋆

≤
(

Kn +
ε

2

)(

(1 +NHλ)
∫

M
|∇u|2dvg +NH(H +

1

λ
)
∫

M
u2dvg

)

where H is such that for any i, |∇√
ηi| ≤ H . Choosing λ > 0 sufficiently small such that

(

Kn +
ε

2

)

(1 +NHλ) ≤
(

Kn +
2ε

3

)

we get that for any u ∈ C∞(M),

(∫

M
|u|2⋆

dvg

)2/2⋆

≤
(

Kn +
2ε

3

)∫

M
|∇u|2dvg +B

∫

M
u2dvg

where

B = NH
(

Kn +
ε

2

)(

H +
1

λ

)

Since the embedding H2
1 ⊂ L2 is compact, and the embedding L2 ⊂ L1 is continuous, it holds

that for any µ > 0, there exists Bµ > 0 such that for any u ∈ H2
1 (M),

‖u‖2
2 ≤ µ‖∇u‖2

2 +Bµ‖u‖2
1

Choosing µ > 0 sufficiently small such that

(

Kn +
2ε

3

)

+Bµ ≤ Kn + ε

it follows that for any u ∈ C∞(M),

(∫

M
|u|2⋆

dvg

)2/2⋆

≤ (Kn + ε)
∫

M
|∇u|2dvg + B̃

(∫

M
|u|dvg

)2

where B̃ = BBµ. Since ε > 0 is arbitrary, and since C∞(M) is dense in H2
1 (M), we get that

for any ε > 0, there exists Bε = B̃ > 0 such that for any u ∈ H2
1 (M),

(∫

M
|u|2⋆

dvg

)2/2⋆

≤ (Kn + ε)
∫

M
|∇u|2dvg +Bε

(∫

M
|u|dvg

)2

This proves (2).

6 Test function arguments

We prove in this section the last parts of theorem 4.1 and 4.2. We start with the proof that
(2.2) is false if n ≥ 4 and the scalar curvature Sg is positive somewhere on M . We can do this
very simply. Given x ∈M such that Sg(x) is positive, we let r > 0 be such that r < ig(x), the
injectivity radius at x. In geodesic normal coordinates,

1

ωn−1

∫

S(r)

√

det(gij)ds = 1 − 1

6n
Sg(x)r

2 +O(r4)

12



where S(r) stands for the sphere of radius r and center x in M . For ε > 0, we define

uε = (ε+ r2)1−n/2 − (ε+ δ2)1−n/2 if r ≤ δ

uε = 0 otherwise

where δ ∈ (0, ig(x)) is given and r = dg(x, .). Easy computations lead to

∫

M
|∇uε|2dvg =

(n− 2)2ωn−1

2
In/2
n ε1−n/2

×
(

1 − (n + 2)

6n(n− 4)
Sg(x) ε+ o(ε)

)

if n > 4

=
(n− 2)2ωn−1

2
ε1−n/2

×
(

In/2
n +

1

6n
Sg(x) ε ln ε+ o(ε ln ε)

)

if n = 4

and
∫

M
u2⋆

ε dvg ≥ (n− 2)ωn−1

2n
In/2
n ε−n/2

×
(

1 − 1

6(n− 2)
Sg(x) ε+ o(ε)

)

if n > 4

≥ (n− 2)ωn−1

2n
In/2
n ε−n/2

×
(

1 + o(ε ln ε)
)

if n = 4

where Iq
p =

∫+∞
0 (1 + t)−ptqdt. As one can easily check

ωn

2n−1ωn−1
= In/2−1

n =
(n− 2)

n
In/2
n

Hence,
(n− 2)2ωn−1

2
In/2
n =

1

Kn

((n− 2)ωn−1

2n
In/2
n

)(n−2)/n

Independently,
∫

M
|uε|dvg = O(1)

so that ε(n−2)/2
∫

M |uε|dvg = o(ε) if n > 4, and ε
∫

M |uε|dvg = o(ε ln ε) if n = 4. Given B ∈ IR,
this leads to

‖∇uε‖2
2 +B‖uε‖2

1

‖uε‖2
2⋆

≤ K−1
n

(

1 − Sg(x)

n(n− 4)
ε+ o(ε)

)

if n > 4

≤ K−1
4

(

1 +
1

8
Sg(x)ε ln ε+ o(ε ln ε)

)

if n = 4

As a consequence, for n ≥ 4 and any B ∈ IR,

‖∇uε‖2
2 +B‖uε‖2

1

‖uε‖2
2⋆

<
1

Kn

13



provided that ε > 0 is small. Clearly, this implies that (2.2) is false if n ≥ 4 and the scalar
curvature is positive somewhere.

Similarly, we can prove very simply that (2.2) is false if n ≥ 6, the manifold is not conformally
flat and the scalar curvature is zero around one nonconformally flat point. We let Wg be the
Weyl tensor of g, and Rcg be the Ricci curvature of g. By assumption, there exists x ∈M such
that Wg(x) 6≡ 0 and Sg ≡ 0 in Bx(δ0) for some δ0 > 0. We let g̃ be a conformal metric to g
such that Rcg̃(x) ≡ 0. We let also δ > 0 be such that Bx(δ) with respect to g̃ is a subset of
Bx(δ0) with respect to g. Since the Weyl curvature tensor is a conformal invariant, Wg̃(x) 6≡ 0.
Given B > 0, it follows from the conformal invariance of the conformal Laplacian that

inf
u∈H2

1 (M)\{0}

∫

M |∇u|2dvg +B (
∫

M |u|dvg)
2

(
∫

M |u|2⋆dvg)
2/2⋆

≤ inf
u∈H

∫

M |∇u|2dvg̃ + n−2
4(n−1)

∫

M Sg̃u
2dvg̃ + B̂ (

∫

M |u|dvg̃)
2

(
∫

M |u|2⋆dvg̃)
2/2⋆

where B̂ > 0, and H consists of the nonzero functions u ∈ H2
1 (M) which are such that

Suppu ⊂ Bx(δ). For ε > 0, we let uε be as above. Then,

∫

M
|uε|dvg̃ = O(1)

so that ε(n−2)/2
∫

M |uε|dvg = o(ε2) if n > 6, and ε2
∫

M |uε|dvg = o(ε2 ln ε) if n = 6. It easily

follows, as in Aubin [2], that for any B̂ > 0,

∫

M |∇uε|2dvg̃ + n−2
4(n−1)

∫

M Sg̃u
2
εdvg̃ + B̂ (

∫

M |uε|dvg̃)
2

(
∫

M |uε|2⋆dvg̃)
2/2⋆

≤ 1

Kn

(

1 − C1|Wg̃(x)|2ε2 + o
(

ε2
))

if n > 6

≤ 1

K6

(

1 + C2|Wg̃(x)|2ε2 ln ε+ o
(

ε2 ln ε
))

if n = 6

where C1 and C2 are explicit positive constants which do not depend on ε. Hence, for any
B > 0,

inf
u∈H2

1 (M)\{0}

∫

M |∇u|2dvg +B (
∫

M |u|dvg)
2

(
∫

M |u|2⋆dvg)
2/2⋆ <

1

Kn

and this proves that if n ≥ 6 and g is scalar flat in an open neighbourhood of one nonconformally
flat point, then inequality (2.2) is false.

Corollary 4.1 is an easy consequence of these estimates. We let (M, g) be a smooth compact
Riemannian manifold of dimension n ≥ 6 and of nonnegative Ricci curvature. We assume that
(2.2) is true on (M, g). The first of the two estimates above gives that the scalar curvature
Sg has to be nonpositive. Hence, (M, g) is Ricci flat. This holds as soon as n ≥ 4. Then the
second of the two estimates above gives that g has to be conformally flat. Hence, g is flat, and
M is covered by a torus thanks to the Bieberbach theorem.
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7 Variational background

For any α > 0, we let Iα be the functional defined on H2
1 (M)\{0} by

Iα(u) =
‖∇u‖2

2 + α‖u‖2
1

‖u‖2
2⋆

and let
µα = inf

H2
1 (M)\{0}

Iα(u) (7.1)

A reformulation of the results of section 5 is that for any α, µα ≤ K−1
n , and that for any ε > 0

there exists αε > 0 (in spirit large) such that for any α ≥ αε, µα ≥ (1 − ε)K−1
n . The result we

prove in this section is the following.

Proposition 7.1 Let (M, g) be a smooth compact Riemannian n-manifold of dimension n ≥ 3.
Suppose that

inf
H2

1 (M)\{0}
Iα(u) <

1

Kn
(7.2)

Then there exists uα ∈ H2
1 (M), uα ≥ 0, uα 6≡ 0, and Σα ∈ L∞(M) with the property that

0 ≤ Σα ≤ 1 and Σαuα = uα, such that

∆guα + α(
∫

M
uαdvg)Σα = µαu

2⋆−1
α (Eα)

and
∫

M u2⋆

α dvg = 1. In particular, uα is a minimizer for µα.

The proof of this proposition goes through rather simple arguments. For q < 2⋆, let θq > 1
be given with the property that θq goes to 1 as q goes to 2⋆. We let α > 0 be such that (7.2)
is true, and for q < 2⋆ we let

λq = inf
H2

1 (M)\{0}

‖∇u‖2
2 + α‖u‖2

θq

‖u‖2
q

The embedding of H2
1 (M) in Lq(M) being compact, and since the above functional is homo-

geneous, there exists a nonnegative minimizer uq for λq such that ‖uq‖q = 1. Clearly, uq is a
weak solution of

∆guq + α(
∫

M
uθq

q dvg)
2

θq
−1
uθq−1

q = λqu
q−1
q (7.3)

where ∆g = −div∇ stands for the Laplacian with respect to g. As one can easily check, up
to a subsequence, we may assume that for some λα ≤ µα, the sequence (λq) goes to λα as q
goes to 2⋆. Noting that (uq) is bounded in H2

1 (M), there exists uα ∈ H2
1 (M) such that, up to

a subsequence, (uq) converges weakly to uα in H2
1 (M), strongly to uα in L2(M), and almost

everywhere. Moreover, one can assume that

uq−1
q ⇀ u2⋆−1

α in L2♯

(M)

where 2♯ = 2n/(n+ 2) is the conjugate exponent of 2⋆. By (7.2), and since for any ε > 0 there
exists Bε such that for any u ∈ H2

1 (M),

‖u‖2
2⋆ ≤ (Kn + ε)‖∇u‖2

2 +Bε‖u‖2
1

15



one has that uα 6≡ 0. This is by now standard. Let εq = θq − 1. Clearly, (uεq
q ) is bounded in

Lp(M) for any p > 1. Concerning such an assertion, just note that for q ≫ 1,

(

∫

M
upεq

q dvg

)1/p ≤
(

∫

M
u2

qdvg

)εq/2
V

1
p
− εq

2
g (7.4)

where Vg stands for the volume of M with respect to g. Since Lp-spaces are reflexive for p > 1,
there exists Σα ∈ ⋂p>1L

p(M) such that for any p > 1, and up to a subsequence,

uεq
q ⇀ Σα in Lp(M)

Passing to the limit as q goes to 2⋆ in (7.4), one gets that for any p > 1,

‖Σα‖p ≤ V 1/p
g

As an easy consequence, Σα ∈ L∞(M) and 0 ≤ Σα ≤ 1. Another easy claim is that Σαϕ = ϕ
for any ϕ ∈ H2

1 (M) having the property that |ϕ| ≤ Cuα on M for some constant C > 0. In
particular, Σαuα = uα. By passing to the limit in (7.3), one gets that uα is a weak solution of

∆guα + α(
∫

M
uαdvg)Σα = λαu

2⋆−1
α (7.5)

Clearly, ‖uα‖2⋆ ≤ 1. Mutiplying (7.5) by uα and integrating over M gives

‖∇uα‖2
2 + α‖uα‖2

1

‖uα‖2
2⋆

= λα‖uα‖2⋆−2
2⋆

As one can easily check, this implies that ‖uα‖2⋆ = 1 and that λα = µα. In particular, uα is a
minimizer for µα. This proves Proposition 7.1.

Let u ∈ H2
1 (M), u ≥ 0, be such that for any nonnegative ϕ ∈ H2

1 (M),

∫

M
(∇u∇ϕ) dvg ≤

∫

M
u2⋆−1ϕdvg

where (∇u∇ϕ) is the pointwise scalar product with respect to g of ∇u and ∇ϕ. We know
from PDE theory and the De Giorgi-Nash-Moser iterative scheme that u ∈ L∞(M), with the
additional property that for any x in M , any Λ > 0, any p > 0, and any q > 2⋆, there exists
δ > 0 such that if ∫

Bx(2δ)
uqdvg ≤ Λ

then

sup
y∈Bx(δ)

u(y) ≤ C̃

(

∫

Bx(2δ)
updvg

)1/p

where C̃ > 0 does not depend on u. It follows that uα ∈ L∞(M). In particular, uα ∈ Hp
2 (M)

for any p > 1, and it follows from (Eα) that uα is actually in C1,λ for any λ ∈ (0, 1). As another
remark, the sequence (uα) is bounded in H2

1 (M).
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8 Elementary theory of concentration points

We suppose in this section that the uα’s of section 7 exist for a sequence (α) converging to
some α0 ∈ (0,+∞]. We assume in what follows that

lim
α→α0

∫

M
u2

αdvg = 0 (8.1)

As a remark, this is automatically the case if α0 = +∞. Multiplying (Eα) by uα, and integrating
over M , we get indeed that

‖∇uα‖2
2 + α‖uα‖2

1 = λα

As a consequence, ‖uα‖1 → 0 as α → +∞, and by Hölder’s inequality, since uα is of norm
1 in L2⋆

, this implies that ‖uα‖2 → 0 as α → +∞. Another remark is the following. By
Hebey-Vaugon [27], there exists B ∈ IR such that for any u ∈ H2

1 (M),

(∫

M
|u|2⋆

dvg

)2/2⋆

≤ Kn

∫

M
|∇u|2dvg +B

∫

M
u2dvg

Taking u = uα in this inequality, we get that 1 ≤ µαKn +B
∫

M u2
αdvg, and it follows from this

inequality and (8.1) that

lim
α→α0

µα =
1

Kn

Similarly,

1 − B
∫

M
u2

αdvg ≤ Kn

∫

M
|∇uα|2dvg = Knµα −Knα

(∫

M
uαdvg

)2

and it follows that

lim
α→α0

α
(∫

M
uαdvg

)2

= 0

In particular, the L1-norm of uα goes to 0 as α goes to α0.

Following standard terminology, we say that x ∈M is a concentration point for the sequence
(uα) if for any δ > 0,

lim sup
α→α0

∫

Bx(δ)
u2⋆

α dvg > 0

SinceM is compact, the existence of at least such a point is easy to get. We prove the uniqueness
of the concentration point in this section.

Proposition 8.1 Let (M, g) be a smooth compact Riemannian n-manifold of dimension n ≥ 3.
We suppose that (7.2) holds for a sequence (α) converging to some α0 ∈ (0,+∞], and we let
the uα’s be given by Proposition 7.1. We assume that (8.1) holds. Then, up to a subsequence,
the sequence (uα) has one and only one concentration point.

The proof of this proposition goes through rather simple arguments. Given x ∈ M and
δ > 0, δ small, let η ∈ C∞

0 (Bx(δ)) be such that 0 ≤ η ≤ 1 and η = 1 in Bx(δ/2). Multiplying
(Eα) by η2uk

α, k ≥ 1 real, and integrating over M lead to

∫

M
η2uk

α∆guαdvg + α(
∫

M
uαdvg)

∫

M
η2uk

αdvg = µα

∫

M
η2u2⋆+k−1

α dvg (8.2)
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As one can easily check,

∫

M
η2uk

α∆guαdvg =
4k

(k + 1)2

∫

M
|∇(ηu(k+1)/2

α )|2dvg

−2(k − 1)

(k + 1)2

∫

M
η(∆gη)u

k+1
α dvg −

2

k + 1

∫

M
|∇η|2uk+1

α dvg

while, by Hölder’s inequality,

∫

M
η2u2⋆+k−1

α dvg ≤
(

∫

M
(ηu(k+1)/2

α )2⋆

dvg

)2/2⋆(∫

Bx(δ)
u2⋆

α dvg

)(2⋆−2)/2⋆

According to Hebey and Vaugon [27], there exists B > 0 such that for any u ∈ H2
1 (M),

(

∫

M
|u|2⋆

dvg

)2/2⋆

≤ Kn

∫

M
|∇u|2dvg +B

∫

M
u2dvg

Coming back to (8.2), and since the second term in the left hand side of (8.2) is nonnegative,
one gets that

Aα(k, δ)
(

∫

M
(ηu(k+1)/2

α )2⋆

dvg

)2/2⋆

≤ k − 1

2k
Kn

∫

M
η(∆gη)u

k+1
α dvg

+
k + 1

2k
Kn

∫

M
|∇η|2uk+1

α dvg +B
∫

M
η2uk+1

α dvg

(8.3)

where

Aα(k, δ) = 1 − (k + 1)2

4k
µαKn

(

∫

Bx(δ)
u2⋆

α dvg

)(2⋆−2)/2⋆

Suppose now that x is a concentration point for (uα). Given δ > 0, let

lim sup
α→α0

∫

Bx(δ)
u2⋆

α dvg = λδ

Then λδ > 0 and λδ ≤ 1. Assume that for some δ > 0, λδ < 1. Together with (7.2), we may
then choose k > 1 sufficiently close to 1 such that

1 − (k + 1)2

4k
µαKnλ

(2⋆−2)/2⋆

δ > 0

The right hand side of (8.3) being bounded for k > 1 close to 1, we get with (8.3) the existence
of K > 0 such that for α ≫ 1,

∫

M
(ηu(k+1)/2

α )2⋆

dvg ≤ K

By Hölder’s inequality, writing that 2⋆ = (2⋆ − k − 1) + (k + 1),

∫

Bx(δ/2)
u2⋆

α dvg ≤
(

∫

M
u

2⋆− 2⋆(k−1)
2⋆−2

α dvg

)(2⋆−2)/2⋆(∫

M
(ηu(k+1)/2

α )2⋆

dvg

)2/2⋆

≤ K2/2⋆
(

∫

M
u

2⋆− 2⋆(k−1)
2⋆−2

α dvg

)(2⋆−2)/2⋆
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Noting that for k > 1 close to 1,

1 < 2⋆ − 2⋆(k − 1)

2⋆ − 2
< 2⋆

one gets that

lim
α→α0

∫

Bx(δ/2)
u2⋆

α dvg = 0 (8.4)

This easily follows from Hölder’s inequality since the L1-norm of uα goes to 0 as α goes to α0,
and since the L2⋆

-norm of uα is 1. Noting that (8.4) is in contradiction with the definition of
a concentration point, one actually has that for any δ > 0, λδ = 1. As one can easily check,
up to the extraction of a subsequence, this implies that a concentration point must be unique.
Proposition 8.1 is proved.

According to the above proposition, (uα) has, up to a subsequence, one and only one
concentration point x0. One may then assume that for any δ > 0,

lim
α→α0

∫

Bx0(δ)
u2⋆

α dvg = 1

Given x 6= x0, one gets with (8.3) that for δ > 0 small, the L(2⋆)2/2-norm of uα in Bx(δ) is
bounded. As an easy consequence of the De Giorgi-Nash-Moser iterative scheme, noting that
(2⋆)2/2 > 2⋆, we then get that

uα → 0 in C0
loc(M\{x0}) (8.7)

as α goes to α0. The uα’s therefore concentrate in the L2⋆
-norm at x0, and they converge C0

to 0 outside x0.

9 Localisation for the sharp Sobolev-Poincaré inequality

We prove in this section that (2.2) is localisable. This is the subject of Proposition 9.1. As we
will see below, the first part of Theorem 4.2, namely that (2.2) is true for manifolds of nonpos-
itive sectional curvature if the Cartan-Hadamard conjecture is true, is an easy consequence of
this proposition.

Proposition 9.1 Let (M, g) be a smooth compact Riemannian n-manifold of dimension n ≥ 3.
Suppose that for any x in M , there exists Ωx an open neighborhood of x, and Bx ∈ IR, such
that for any u ∈ C∞

0 (Ωx),
‖u‖2

2⋆ ≤ Kn‖∇u‖2
2 +Bx‖u‖2

1 (9.1)

Then (2.2) is true on (M, g).

The proof of this proposition goes through rather simple arguments from blow-up theory.
For any α > 0, we let Iα be the functional of section 7. We assume that (2.2) is locally valid.
The proposition reduces to the existence of some α0 such that

inf
H2

1 (M)\{0}
Iα0(u) ≥

1

Kn
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We proceed by contradiction, and assume that for any α > 0,

inf
H2

1 (M)\{0}
Iα(u) <

1

Kn
(9.2)

Then, propositions 7.1 and 8.1 apply. We let x0 be the concentration point of (uα), and we use
the notations of sections 7 and 8. By assumption there exists B ∈ IR and δ > 0 such that for
any u ∈ H2

0,1(Bδ),

(

∫

M
|u|2⋆

dvg

)2/2⋆

≤ Kn

∫

M
|∇u|2dvg +B

(

∫

M
|u|dvg

)2
(9.3)

where Bδ = Bx0(δ) and H2
0,1(Bδ) stands for the completion of C∞

0 (Bδ) with respect to ‖.‖H2
1
.

We let η ∈ C∞
0 (Bδ) be such that 0 ≤ η ≤ 1 and η = 1 in Bδ′ for some δ′ ∈ (0, δ). Setting

η′ = 1 − η, (9.3) leads in particular to
(

∫

Bδ′

u2⋆

α dvg

)2/2⋆

≤ Kn

∫

M
|∇((1 − η′)uα)|2dvg +B

(

∫

M
uαdvg

)2

Clearly, there exists C > 0, independent of α, such that
∫

M
|∇((1 − η′)uα)|2dvg ≤

∫

M
|∇uα|2dvg + C

∫

M\Bδ′

|∇uα|2dvg

+C
∫

M\Bδ′

uα|∇uα|dvg + C
∫

M\Bδ′

u2
αdvg

Multiplying (Eα) by uα, and integrating over M , gives
∫

M
|∇uα|2dvg + α

(

∫

M
uαdvg

)2
= µα

Hence,
(

∫

Bδ′

u2⋆

α dvg

)2/2⋆

≤ Knµα − αKn

(

∫

M
uαdvg

)2

+C
∫

M\Bδ′

|∇uα|2dvg + C
∫

M\Bδ′

uα|∇uα|dvg

+C
∫

M\Bδ′

u2
αdvg +B

(

∫

M
uαdvg

)2

for some other constant C > 0 independent of α. Clearly,

1 −
(

∫

Bδ′

u2⋆

α dvg

)2/2⋆

≤
∫

M\Bδ′

u2⋆

α dvg

while
∫

M\Bδ′

uα|∇uα|dvg ≤
(

∫

M\Bδ′

u2
αdvg

)1/2(
∫

M\Bδ′

|∇uα|2dvg

)1/2

Since µαKn < 1, one gets that

αKn −B ≤
∫

M\Bδ′
u2⋆

α dvg
(

∫

M uαdvg

)2 + C

∫

M\Bδ′
|∇uα|2dvg

(

∫

M uαdvg

)2 + C

∫

M\Bδ′
u2

αdvg
(

∫

M uαdvg

)2

+C
(

∫

M\Bδ′
u2

αdvg
(

∫

M uαdvg

)2

)1/2(
∫

M\Bδ′
|∇uα|2dvg

(

∫

M uαdvg

)2

)1/2

(9.4)
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Thanks to the De Giorgi-Nash-Moser iterative scheme,

∫

M\Bδ′

u2
αdvg ≤ Vg( sup

M\Bδ′

uα)2

≤ C
(

∫

M
uαdvg

)2

where Vg stands for the volume of M with respect to g, and C > 0 is independent of α. As a
consequence,

∫

M\Bδ′
u2

αdvg
(

∫

M uαdvg

)2 ≤ C (9.5)

Together with (8.7),
∫

M\Bδ′
u2⋆

α dvg
(

∫

M uαdvg

)2 ≤ C( sup
M\Bδ′

uα)2⋆−2

so that

lim
α→+∞

∫

M\Bδ′
u2⋆

α dvg
(

∫

M uαdvg

)2 = 0 (9.6)

For δ′′ ∈ (0, δ′), let 0 ≤ η′′ ≤ 1 be a smooth function on M such that η′′ = 0 on Bδ′′ and η′′ = 1
on M\Bδ′′ . Mutiplying (Eα) by (η′′)2uα, and integrating over M , gives

∫

M
(η′′)2|∇uα|2dvg + 2

∫

M
η′′uα〈∇η′′,∇uα〉dvg ≤ K−1

n

∫

M
(η′′)2u2⋆

α dvg

In particular,

∫

M
(η′′)2|∇uα|2dvg ≤ C

∫

M
(η′′)2u2⋆

α dvg

+C
(

∫

M
|∇η′′|2u2

αdvg

)1/2(
∫

M
(η′′)2|∇uα|2dvg

)1/2

for some constant C > 0 independent of α. Hence,

∫

M(η′′)2|∇uα|2dvg
(

∫

M uαdvg

)2 ≤ C

∫

M(η′′)2u2⋆

α dvg
(

∫

M uαdvg

)2

+C
(

∫

M |∇η′′|2u2
αdvg

(

∫

M uαdvg

)2

)1/2(
∫

M(η′′)2|∇uα|2dvg
(

∫

M uαdvg

)2

)1/2

By (9.6),

lim
α→+∞

∫

M(η′′)2u2⋆

α dvg
(

∫

M uαdvg

)2 = 0

while by (9.5),
∫

M |∇η′′|2u2
αdvg

(

∫

M uαdvg

)2 ≤ C
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for some C > 0 independent of α. Noting that

∫

M\Bδ′
|∇uα|2dvg

(

∫

M uαdvg

)2 ≤
∫

M(η′′)2|∇uα|2dvg
(

∫

M uαdvg

)2

one gets the existence of C > 0 independent of α such that

∫

M\Bδ′
|∇uα|2dvg

(

∫

M uαdvg

)2 ≤ C (9.7)

Combining (9.4) with (9.5) to (9.7), leads to a contradiction. This ends the proof of the
proposition.

The first part of Theorem 4.2, namely that (2.2) is true for manifolds of nonpositive sectional
curvature if the Cartan-Hadamard conjecture is true, is an easy consequence of Proposition 9.1.
Given (M, g) a smooth compact Riemannian n-manifold, we suppose that its sectional curvature
Kg is nonpositive, and that the n-dimensional Cartan-Hadamard conjecture is true. Let (M̃, g̃)
be the universal Riemannian covering of (M, g). Then for any smooth bounded domain Ω in
M̃ ,

|∂Ω|g̃
|Ω|(n−1)/n

g̃

≥ n
(

ωn−1

n

)
1
n

(9.8)

By standard arguments, see for instance Hebey [24], (9.8) implies that for any u ∈ C∞
0 (M̃),

(

∫

M̃
|u|2⋆

dvg̃

)2/2⋆

≤ K2
n

∫

M̃
|∇u|2dvg̃ (9.9)

Since (M, g) is locally isometric to (M̃, g̃), (9.9) implies that (2.2) is locally valid on (M, g). By
Proposition 9.1, with Bx = 0, this implies that (2.2) is valid on (M, g). As a remark, the same
argument leads to the same conclusion if Kg is a nonpositive constant since (9.8) is true for the
hyperbolic space and the Euclidean space. As another remark, the same argument leads to the
same conclusion if we only assume that a local n-dimensional Cartan-Hadamard conjecture is
true on (M̃, g̃).

10 The 3-dimensional case

We prove in this section the first part of Theorem 4.1, namely that (2.2) is always true in
dimension 3. The particular case where the manifold we consider is conformally flat is easy to
handle. The result is there a straightforward consequence of the following inequality obtained
by Brezis and Nirenberg [7] (see also Brézis and Lieb [6]): for Ω a smooth bounded domain in
IR3, and for any u ∈ C∞

0 (Ω),

‖u‖2
2⋆ ≤ K3‖∇u‖2

2 − λ|Ω|−2/3‖u‖2
2 (10.1)

where |Ω| stands for the Euclidean volume of Ω, and λ > 0 explicitly known does not depend
on Ω. If ξ stands for the Euclidean metric, and (M, g) is conformally flat, then for any x in
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M , there exists rx > 0, and ϕx a smooth positive function on M , such that in some chart at x
whose domain contains Ωx = Bx(rx), ξ = ϕ−4

x g on Ωx. As one can easily check, for u ∈ C∞
0 (Ωx),

∫

M
|∇(uϕx)|2dx =

∫

M
|∇u|2dvg +

1

8

∫

M
Sgu

2dvg

where Sg stands for the scalar curvature of g. Coming back to (10.1), for any u ∈ C∞
0 (Ωx),

(

∫

M
u6dvg

)1/3
+ λ|Ωx|−2/3

∫

M

u2

ϕ4
x

dvg

≤ K3

∫

M
|∇u|2dvg +

1

8
K3

∫

M
Sgu

2dvg

Choosing rx > 0 small enough such that

λ|Ωx|−2/3(maxϕ−4
x ) ≥ 1

8
K3(maxSg)

one then gets that for any x ∈M , there exists Ωx an open neighborhood of x such that for any
u ∈ C∞

0 (Ωx),
(

∫

M
u6dvg

)1/3 ≤ K3

∫

M
|∇u|2dvg

Thanks to Proposition 9.1, this proves that (2.2) is always true in dimension 3 when the
manifold we consider is conformally flat.

Now we prove the first part of Theorem 4.1, namely that (2.2) is always true in dimension 3,
in the more difficult case where the manifold is not necessarily conformally flat. We follow the
original reference Druet-Hebey-Vaugon [19], but mention that a much simplier argument exists
thanks to the more recent Druet [14] or Johnson and Morgan [28]. As when proving that the
Sobolev-Poincaré inequality is localisable, we proceed by contradiction. We assume therefore
that for any α > 0,

inf
H2

1 (M)\{0}
Iα(u) <

1

K3
(10.2)

where Iα is as in section 7. Hence the results of sections 7 and 8 hold. As in section 7, (10.2)
leads to the existence of a minimizer uα ∈ H2

1 (M), uα ≥ 0 and of norm 1 in L6(M). If µα

stands for the above infimum, one has that

∆guα + α(
∫

M
uαdvg)Σα = µαu

5
α (Eα)

where Σα ∈ L∞(M) is such that 0 ≤ Σα ≤ 1 and Σαϕ = ϕ for any ϕ ∈ H2
1 (M) having the

property that |ϕ| ≤ Cuα on M for some constant C > 0. Moreover, uα is in C1,λ for any
λ ∈ (0, 1), and the sequence (uα) is bounded in H2

1 (M). We also have that,

lim
α→+∞

µα =
1

K3
(10.3)

and
lim

α→+∞
α‖uα‖2

1 = 0 (10.4)
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Moreover, we may assume that (uα) has one and only one concentration point x0, we may
assume that for any δ > 0,

lim
α→+∞

∫

Bx0 (δ)
u6

αdvg = 1 (10.5)

and we may assume that
uα → 0 in C0

loc(M\{x0}) (10.6)

as α goes to +∞.

We let xα ∈M and λα ∈ IR be such that

uα(xα) = ‖uα‖∞ = λ−1/2
α

According to what we just said, xα → x0 and λα → 0 as α → +∞. By (10.4), noting that

1 = ‖uα‖6
6 ≤ ‖uα‖5

∞‖uα‖1

one gets that
lim

α→+∞
αλ5/2

α ‖uα‖1 = 0 (10.7)

The proof now proceeds in several steps.

STEP 1. We claim that for any R > 0,

lim
α→+∞

∫

Bxα (Rλα)
u6

αdvg = 1 − εR (10.8)

where εR > 0 is such that εR → 0 as R → +∞. We let expxα
be the exponential map at xα.

There clearly exists δ > 0, independent of α, such that for any α, expxα
is a diffeomorphism

from B0(δ) ⊂ IR3 onto Bxα(δ). For x ∈ B0(λ
−1
α δ), set

g̃α(x) = (exp⋆
xα
g)(λαx)

ũα(x) = λ1/2
α uα(expxα

(λαx))

Σ̃α = Σα(expxα
(λαx))

As one can easily check,
∆g̃αũα + α‖uα‖1λ

5/2
α Σ̃α = µαũ

5
α (Ẽα)

Moreover,
ũα(0) = ‖ũα‖∞ = 1 (10.9)

and if ξ stands for the Euclidean metric of IR3,

lim
α→+∞

g̃α = ξ in C2(K) (10.10)

for any compact subset K of IR3. By (10.7), (10.9), and theorem 8.24 of Gilbarg-Trudinger
[22], (ũα) is equicontinuous on any compact subset of IR3. By Ascoli’s theorem, one gets the
existence of some ũ ∈ C0(IR3) such that for any compact subset K of IR3,

lim
α→+∞

ũα = ũ in L∞(K) (10.11)
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Clearly, ũ(0) = 1 and ũ 6≡ 0. An easy assertion to check is that ũ ∈ H2
0,1(IR

3), where H2
0,1(IR

3)

stands for the completion of C∞
0 (IR3) with respect to

‖u‖H2
0,1

=

√

∫

IR
3
|∇u|2dx

Indeed, let η ∈ C∞
0 (IR3), 0 ≤ η ≤ 1, be such that η = 1 in B0(δ/4) and η = 0 in IR3\B0(δ/2).

We set ηα(x) = η(µαx), and
ϕα(x) = ηα(x)ũα(x)

Then, ϕα ∈ C1
0 (IR3), and ϕα → ũ in L∞(K) for any compact subset K of IR3. Clearly, there

exists C > 0 such that for any α,

‖ϕα‖H2
0,1

≤ C
∫

IR
3
|∇ϕα|2dvg̃α

≤ C
∫

IR
3
η2

α|∇ũα|2dvg̃α + Cλ2
α

∫

IR
3
|∇η(µαx)|2ũ2

αdvg̃α

On the one hand,
∫

B0(δλ−1
α )

ũ2
αdvg̃α = λ−2

α

∫

Bxα(δ)
u2

αdvg

On the other hand,

∫

IR
3
η2

α|ũα|2dvg̃α ≤
∫

B0(δλ−1
α )

|ũα|2dvg̃α

=
∫

Bxα(δ)
|∇uα|2dvg

Hence, (ϕα) is bounded in H2
0,1(IR

3), and since H2
0,1(IR

3) is reflexive, ũ ∈ H2
0,1(IR

3). This proves

the above assertion. By passing to the limit as α goes to +∞ in (Ẽα), according to (10.3),
(10.7), (10.10), and (10.11), one now gets that ũ is a solution of

∆ξũ =
1

K3
ũ5 (Ẽ)

By Caffarelli-Gidas-Spruck [8], or also Obata [32],

ũ(x) =
( 3K3

3K3 + |x|2
)1/2

since ũ(0) = 1. Noting that ũ is of norm 1 in L6(IR3), and that for any R > 0,

∫

Bxα (Rλα)
u6

αdvg =
∫

B0(R)
ũ6

αdvg̃α

one gets that

lim
α→+∞

∫

Bxα(Rλα)
u6

αdvg = 1 −
∫

IR
3\B0(R)

ũ6dx

Clearly, this proves (10.8) and the claim we made in step 1.
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STEP 2. We claim that there exists C > 0, independent of α, such that for any α, and any
x,

dg(xα, x)
1/2uα(x) ≤ C (10.12)

where dg stands for the distance with respect to g. In order to prove such a claim, set

vα(x) = dg(xα, x)
1/2uα(x)

and assume by contradiction that for some subsequence,

lim
α→+∞

‖vα‖∞ = +∞ (10.13)

Let yα be some point in M where vα is maximum. By (10.6), yα → x0 as α → +∞, while by
(10.13),

lim
α→+∞

dg(xα, yα)

λα

= +∞ (10.14)

Fix now δ > 0 small, and set

Ωα = uα(yα)2exp−1
yα

(Bxα(δ))

For x ∈ Ωα, define
ṽα(x) = uα(yα)−1uα(expyα

(uα(yα)−2x))

and
hα(x) = (exp⋆

yα
g)(uα(yα)−2x)

Clearly,
lim

α→+∞
hα = ξ in C2(B0(2)) (10.15)

Moreover, as one can easily check,
∆hα ṽα ≤ µαṽ

5
α (10.16)

Since vα(yα) goes to +∞ as α goes to +∞, and together with (10.13), one gets that for α large,
and all x ∈ B0(2),

dg(xα, expyα(uα(yα)−2x)) ≥ 1

2
dg(xα, yα) (10.17)

This implies that

ṽα(x) ≤
√

2dg(xα, yα)−1/2uα(yα)−1vα(expyα(uα(yα)−2x))

≤
√

2dg(xα, yα)−1/2uα(yα)−1vα(yα)

so that for α large,
sup

x∈B0(2)
ṽα(x) ≤

√
2 (10.18)

By (2.14) and (2.17), given R > 0, and for α large,

Byα(2uα(yα)−2)
⋂

Bxα(Rλα) = ∅

26



Noting that
∫

B0(2)
ṽ6

αdvhα =
∫

Byα (2uα(yα)−2)
u6

αdvg

and together with (10.8), one gets that

lim
α→+∞

∫

B0(2)
ṽ6

αdvhα = 0 (10.19)

By (10.15), (10.16), (10.18), and (10.19), and the De Giorgi-Nash-Moser iterative scheme, one
gets that

lim
α→+∞

sup
x∈B0(1)

ṽα(x) = 0

But ṽα(0) = 1, so that (10.13) must be false. This proves (10.12) and the claim we made in
step 2.

STEP 3. We prove the result, showing that (10.2) leads to a contradiction. We let δ > 0
small to be fixed later on, and for any α, we let ηα ∈ C∞

0 (Bxα(4δ)) be such that 0 ≤ ηα ≤ 1,
ηα = 1 in Bxα(2δ), and |∇ηα| ≤ C/δ. Here, and in what follows, C denotes a constant
independent of α and δ. By Brezis and Nirenberg [7], inequality (10.1), and passing through
geodesic normal coordinates,

(

∫

Bxα(2δ)
u6

αdx
)1/3 ≤ K3

∫

Bxα (4δ)
|∇(ηαuα)|2ξdx−

λ

δ2

∫

Bxα (4δ)
(ηαuα)2dx (10.20)

where λ > 0 does not depend on α and δ. When confusions are possible, we write |.|ξ and |.|g to
specify the metric with respect to which norms are taken. Starting from the Cartan expansion
of g in such coordinates,

|∇(ηαuα)|2ξ ≤ (1 + Cdg(xα, x)
2)|∇(ηαuα)|2g

and
(1 − Cdg(xα, x)

2)dvg ≤ dx ≤ (1 + Cdg(xα, x)
2)dvg

Hence,
∫

Bxα(4δ)
|∇(ηαuα)|2ξdx ≤

∫

Bxα(4δ)
(1 + Cdg(xα, x)

2)|∇(ηαuα)|2gdvg (10.21)

On the one hand,

∫

Bxα(4δ)
|∇(ηαuα)|2gdvg ≤

∫

M
|∇uα|2gdvg +

C

δ2

∫

M\Bxα(2δ)
u2

αdvg

+
C

δ

∫

M\Bxα(2δ)
uα|∇uα|dvg

Multiplying (Eα) by uα, and integrating over M , gives

∫

Bxα(4δ)
|∇(ηαuα)|2gdvg ≤ µα − α(

∫

M
uαdvg)

2

+
C

δ2

∫

M\Bxα (2δ)
u2

αdvg +
C

δ

∫

M\Bxα (2δ)
uα|∇uα|gdvg

(10.22)
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On the other hand,
∫

Bxα(4δ)
dg(xα, x)

2|∇(ηαuα)|2gdvg ≤ C
∫

M\Bxα(2δ)
u2

αdvg

+2
∫

Bxα(4δ)
η2

α|∇uα|2gdg(xα, x)
2dvg

(10.23)

Integrating by parts, and according to (Eα),
∫

Bxα (4δ)
η2

α|∇uα|2gdg(xα, x)
2dvg ≤ C

∫

Bxα(4δ)
dg(xα, x)

2η2
αu

6
αdvg

+C
∫

M\Bxα(2δ)
uα|∇uα|gdvg + C

∫

M\Bxα (2δ)
u2

αdvg

+C
∫

Bxα(4δ)
η2

αu
2
αdvg

(10.24)

By (10.12),
∫

Bxα(4δ)
dg(xα, x)

2η2
αu

6
αdvg ≤ C

∫

Bxα (4δ)
η2

αu
2
αdvg (10.25)

Combining (10.23), (10.24), and (10.25), one may write that
∫

Bxα (4δ)
dg(xα, x)

2|∇(ηαuα)|2gdvg ≤ C
∫

Bxα(4δ)
η2

αu
2
αdvg

+
C

δ

∫

M\Bxα(2δ)
uα|∇uα|gdvg +

C

δ2

∫

M\Bxα(2δ)
u2

αdvg

(10.26)

Independently,
∫

Bxα(2δ)
u6

αdx ≥
∫

Bxα(2δ)
u6

αdvg − C
∫

Bxα(2δ)
dg(xα, x)

2u6
αdvg

so that, again by (10.12),
∫

Bxα(2δ)
u6

αdx ≥
∫

Bxα(2δ)
u6

αdvg − C
∫

Bxα (2δ)
u2

αdvg

For α large, noting that Bx0(δ) ⊂ Bxα(2δ), one gets from (10.5) and the fact that ‖uα‖2 → 0
as α→ +∞, that the right hand side in this inequality is positive. Since it is also less than 1,

(

∫

Bxα(2δ)
u6

αdx
)1/3 ≥

∫

Bxα (2δ)
u6

αdvg − C
∫

Bxα(2δ)
u2

αdvg

and
(

∫

Bxα(2δ)
u6

αdx
)1/3 ≥ 1 −

∫

M\Bxα(2δ)
u6

αdvg − C
∫

Bxα (4δ)
η2

αu
2
αdvg (10.27)

By (10.2), (10.20), (10.21), (10.22), (10.26), and (10.27), one gets that

αK3(
∫

M
uαdvg)

2 ≤
∫

M\Bxα(2δ)
u6

αdvg +
C

δ2

∫

M\Bxα (2δ)
u2

αdvg

+
C

δ

∫

M\Bxα (2δ)
uα|∇uα|dvg + (C − λ

δ2
)
∫

Bxα (4δ)
η2

αu
2
αdvg

(10.28)
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We fix now δ > 0 sufficiently small such that

C − λ

δ2
< 0

Noting that Bx0(δ) ⊂ Bxα(2δ), and writing by Hölder’s inequality that

∫

M\Bxα(2δ)
uα|∇uα|dvg ≤

√

∫

M\Bxα (2δ)
u2

αdvg

√

∫

M\Bxα (2δ)
|∇uα|2dvg

one gets with (10.28) the existence of some constant C > 0, independent of α, such that

αK3 ≤
∫

M\Bx0 (δ) u
6
αdvg

(
∫

M uαdvg)
2 + C

∫

M\Bx0 (δ) u
2
αdvg

(
∫

M uαdvg)
2

+C
(

∫

M\Bx0 (δ) u
2
αdvg

(
∫

M uαdvg)
2

)1/2(
∫

M\Bx0 (δ) |∇uα|2dvg

(
∫

M uαdvg)
2

)1/2

(10.29)

As in the proof of Proposition 9.1, see (9.5) to (9.7), the right hand side in (10.29) is bounded
by some positive constant independent of α. Since the left hand side of (10.29) goes to +∞
as α goes to +∞, we get a contradiction. This proves that (2.2) is true on any 3-dimensional
manifold.

11 Negative and nonpositive scalar curvature

We start with the proof of the second part of Theorem 4.1 and of the first part of Theorem 4.4,
namely that when n ≥ 4, (2.2) is true and (2.3) possesses extremal functions on any smooth
compact Riemannian n-manifold of negative scalar curvature. Then we prove the second part
of Theorem 4.2, namely that when n ≥ 4, (2.2) is true on any smooth compact conformally flat
Riemannian n-manifold of nonpositive scalar curvature.

11.1 Negative scalar curvature

Suppose first that (2.2) is not true. Let α0 = +∞. Then, for any α ∈ (0, α0),

inf
H2

1 (M)\{0}
Iα(u) <

1

Kn

where Iα is as in section 7. Suppose now that (2.2) is true and let α0 = B0(g)K
−1
n . By the

definition of B0(g), for any α ∈ (0, α0),

inf
H2

1 (M)\{0}
Iα(u) <

1

Kn

By section 7 we get in both cases that there exist uα ∈ H2
1 (M) and Σα ∈ L∞(M), 0 ≤ Σα ≤ 1,

such that for a sequence (α), α < α0, converging to α0,

∆guα + α
(∫

M
uαdvg

)

Σα = µαu
2⋆−1
α (11.1.1)
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and ∫

M
u2⋆

α dvg = 1 (11.1.2)

where µα < K−1
n is the infimum of Iα. Moreover, Σαϕ = ϕ for any ϕ ∈ H2

1 (M) such that
|ϕ| ≤ Cuα for some constant C > 0. As already mentioned, if α0 = +∞, we necessarily have
that

lim
α→α0

∫

M
u2

αdvg = 0 (11.1.3)

On the other hand, let us assume that α0 = B0(g)K
−1
n and that (11.1.3) does not hold. Then,

up to a subsequence, uα ⇀ u in H2
1 (M) and uα → u in L2(M) as α → α0, where u ∈ H2

1 (M),
u 6≡ 0. Up to another subsequence, we may also assume that µα → µ as α → α0. We claim
now that u is an extremal function for (2.3). Indeed, since 0 ≤ Σα ≤ 1,

lim
α→α0

∫

M
Σα (uα − u) dvg = 0

and we also have that
∫

M Σαuαdvg =
∫

M uαdvg and
∫

M uαdvg → ∫

M udvg as α → α0. It follows
that

lim
α→α0

∫

M
Σαudvg =

∫

M
udvg

Multiplying (11.1.1) by u, integrating over M , and passing to the limit as α → α0, we then get
that

∫

M
|∇u|2dvg + α0

(∫

M
udvg

)2

= µ
∫

M
u2⋆

dvg

Hence,
1

Kn

≤
∫

M |∇u|2dvg + α0 (
∫

M udvg)
2

(
∫

M u2⋆dvg)
2/2⋆ ≤ λ

(∫

M
u2⋆

dvg

)1− 2
2⋆

(11.1.4)

Since λ ≤ K−1
n and

∫

M
u2⋆

dvg ≤ 1 = lim inf
α→α0

∫

M
u2⋆

α dvg

it follows from (11.1.4) that µ = K−1
n and ‖u‖2⋆ = 1. In particular, u is an extremal function

for (1.4), and the above claim is proved. Summarizing, the proof of the second part of Theorem
4.1 and of the first part of Theorem 4.4, namely that when n ≥ 4, (2.2) is true and (2.3)
possesses extremal functions on any smooth compact Riemannian n-manifold of negative scalar
curvature, reduces to the proof that (11.1.3) is impossible.

We proceed by contradiction. We let (M, g) be a smooth compact Riemannian n-manifold
of negative scalar curvature, n ≥ 4, and we assume that for any α ∈ (0, α0),

inf
H2

1 (M)\{0}
Iα(u) <

1

Kn
(11.1.5)

and that
lim

α→α0

∫

M
u2

αdvg = 0 (11.1.6)

where α0 ∈ (0,+∞] is either +∞ if we want to prove that (2.2) is true, or B0(g)K
−1
n if we want

to prove that (2.3) possesses extremal functions. We split the proof into different steps. The
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two first steps are the n-dimensional versions of the estimates we proved when dealing with the
3-dimensional case.

By (11.1.5) the results of sections 7 and 8 hold. As in section 7, (11.1.5) leads to the
existence of a minimizer uα ∈ H2

1 (M), uα ≥ 0 and of norm 1 in L2⋆
(M). If µα stands for the

infimum in (11.1.5), one has that

∆guα + α(
∫

M
uαdvg)Σα = µαu

2⋆−1
α (Eα)

where Σα ∈ L∞(M) is such that 0 ≤ Σα ≤ 1 and Σαϕ = ϕ for any ϕ ∈ H2
1 (M) having the

property that |ϕ| ≤ Cuα on M for some constant C > 0. Moreover, uα is in C1,λ for any
λ ∈ (0, 1), and the sequence (uα) is bounded in H2

1 (M). We also have that,

lim
α→α0

µα =
1

Kn
(11.1.7)

and
lim

α→α0
α‖uα‖2

1 = 0 (11.1.8)

Moreover, we may assume that (uα) has one and only one concentration point x0, we may
assume that for any δ > 0,

lim
α→α0

∫

Bx0(δ)
u2⋆

α dvg = 1 (11.1.9)

and we may assume that
uα → 0 in C0

loc(M\{x0}) (11.1.10)

as α goes to α0.

We let xα ∈M and λα ∈ IR be such that

uα(xα) = ‖uα‖∞ = λ−(n−2)/2
α

According to what we just said, xα → x0 and λα → 0 as α → α0. By (11.1.8), noting that

1 = ‖uα‖2⋆

2⋆ ≤ ‖uα‖2⋆−1
∞ ‖uα‖1

one gets that
lim

α→α0
αλ(n+2)/2

α ‖uα‖1 = 0 (11.1.11)

As already mentioned, the proof now proceeds in several steps.

STEP 1. We claim that for any R > 0,

lim
α→α0

∫

Bxα(Rλα)
u2⋆

α dvg = 1 − εR (11.1.12)

where εR > 0 is such that εR → 0 as R → +∞. We let expxα
be the exponential map at xα.

There clearly exists δ > 0, independent of α, such that for any α, expxα
is a diffeomorphism

from B0(δ) ⊂ IRn onto Bxα(δ). For x ∈ B0(λ
−1
α δ), we set

g̃α(x) =
(

exp⋆
xα
g
)

(λαx) , ũα(x) = λ
n−2

2
α uα

(

expxα
(λαx)

)
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and Σ̃α(x) = Σα

(

expxα
(λαx)

)

. It is easily seen that

∆g̃αũα + αλ
n+2

2
α

(∫

M
uαdvg

)

Σ̃α = µαũ
2⋆−1
α (11.1.13)

Moreover,
ũα(0) = ‖ũα‖∞ = 1 (11.1.14)

and if ξ stands for the Euclidean metric of IRn,

lim
α→α0

g̃α = ξ in C2(K) (11.1.15)

for any compact subset K of IRn. Thanks to (11.1.11) and (11.1.13)-(11.1.15), we get by
standard elliptic theory, as developed in Gilbarg-Trudinger [22], that there exists some ũ ∈
C1(IRn) such that for any compact subset K of IRn,

lim
α→α0

ũα = ũ in C1(K) (11.1.16)

Clearly, ũ(0) = 1 and ũ 6≡ 0. Moreover, it is easily seen that ũ ∈ H2
0,1(IR

n), where H2
0,1(IR

n)
is the homogeneous Euclidean Sobolev space of order two for integration and order one for
differentiation. By passing to the limit as α goes to α0 in (11.1.13), according to (11.1.7),
(11.1.11), (11.1.15), and (11.1.16), we get that ũ is a solution of

∆ξũ =
1

Kn

ũ2⋆−1

By Caffarelli-Gidas-Spruck [8], and also Obata [32],

ũ(x) =

(

1

1 + A|x|2
)

n−2
2

(11.1.17)

where A−1 = n(n− 2)Kn, since ũ(0) = ‖ũ‖∞ = 1 by (11.1.14) and (11.1.16). Noting that ũ is
of norm 1 in L2⋆

(IRn), and that for any R > 0,

∫

Bxα (Rλα)
u2⋆

α dvg =
∫

B0(R)
ũ2⋆

α dvg̃α

we get that

lim
α→α0

∫

Bxα (Rλα)
u2⋆

α dvg = 1 −
∫

IR
n\B0(R)

ũ2⋆

dx

This proves (11.1.12).

STEP 2. We claim that there exists C > 0, such that for any α, and any x,

dg(xα, x)
n
2
−1uα(x) ≤ C (11.1.18)

where dg is the distance with respect to g. In order to prove this claim we set

vα(x) = dg(xα, x)
n
2
−1uα(x)
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and assume by contradiction that for some subsequence,

lim
α→α0

‖vα‖∞ = +∞ (11.1.19)

Let yα be some point in M where vα is maximum. By (11.1.10), yα → x0 as α → α0, while by
(11.1.19),

lim
α→α0

dg(xα, yα)

λα
= +∞ (11.1.20)

Fix now δ > 0 small, and set

Ωα = uα(yα)
2

n−2 exp−1
yα

(Bxα(δ))

For x ∈ Ωα, define

ṽα(x) = uα(yα)−1uα

(

expyα
(uα(yα)−

2
n−2x)

)

and
hα(x) =

(

exp⋆
yα
g
) (

uα(yα)−
2

n−2x
)

It easily follows from (11.1.19), since M is compact, that uα(yα) → +∞ as α → α0. Hence,

lim
α→α0

hα = ξ in C2 (B0(2)) (11.1.21)

where ξ is the Euclidean metric. Independently, we have that

∆hα ṽα ≤ µαṽ
2⋆−1
α (11.1.22)

Since vα(yα) goes to +∞, for α close to α0, and all x ∈ B0(2),

dg

(

xα, expyα
(uα(yα)−

2
n−2x)

)

≥ 1

2
dg(xα, yα) (11.1.23)

This implies that

ṽα(x) ≤ 2
n
2
−1dg(xα, yα)1−n

2 uα(yα)−1vα

(

expyα
(uα(yα)−

2
n−2x)

)

≤ 2
n
2
−1dg(xα, yα)1−n

2 uα(yα)−1vα(yα)

so that for α close to α0,
sup

x∈B0(2)
ṽα(x) ≤ 2

n
2
−1 (11.1.24)

By (11.1.20) and (11.1.23), given R > 0, and for α close to α0,

Byα(2uα(yα)−
2

n−2 )
⋂

Bxα(Rλα) = ∅ (11.1.25)

Noting that
∫

B0(2)
ṽ2⋆

α dvhα =
∫

Byα(2uα(yα)
− 2

n−2 )
u2⋆

α dvg

it follows from (11.1.12) and (11.1.25) that

lim
α→α0

∫

B0(2)
ṽ2⋆

α dvhα = 0 (11.1.26)
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By (11.1.21), (11.1.22), (11.1.24), (11.1.26), and the De Giorgi-Nash-Moser iterative scheme we
get that

lim
α→α0

sup
x∈B0(1)

ṽα(x) = 0

But ṽα(0) = 1, so that (11.1.19) must be false. This proves (11.1.18).

STEP 3. We claim that given R > 0,

sup
x∈M\Bxα(Rλα)

dg(xα, x)
n
2
−1uα(x) = εR(α) (11.1.27)

where dg is the distance with respect to g, and lim
R→+∞

lim
α→α0

εR(α) = 0. In order to prove this

claim we set
vα(x) = dg(xα, x)

n
2
−1uα(x)

and proceed once more by contradiction. Then there exists yα ∈M and ε0 > 0 such that

lim
α→α0

dg(xα, yα)

λα
= +∞ and vα(yα) ≥ ε0

As above, we fix δ > 0 small, and set

Ωα = uα(yα)
2

n−2 exp−1
yα

(Bxα(δ))

For x ∈ Ωα, we define

ṽα(x) = uα(yα)−1uα

(

expyα
(uα(yα)−

2
n−2x)

)

and
hα(x) =

(

exp⋆
yα
g
) (

uα(yα)−
2

n−2x
)

Once again ∆hα ṽα ≤ µαṽ
2⋆−1
α . As when proving (11.1.18), for any x ∈ B0(

1
2
ε

2
n−2

0 ),

dg(xα, zα) ≥ 1

2
dg(xα, yα)

and
ṽα(x) = uα(yα)−1vα(zα)dg(xα, zα)1−n

2

where zα = expyα
(uα(yα)−

2
n−2x). It follows from (11.1.18) that

ṽα(x) ≤ C2
n
2
−1ε−1

0

Noting that for R > 0, and for α close to α0,

Byα

(

1

2
ε

2
n−2

0 uα(yα)−
2

n−2

)

⋂

Bxα(Rλα) = ∅

we conclude as when proving (11.1.18) that (11.1.27) holds.
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STEP 4. We claim that if α0 = +∞, then, for any δ > 0,

lim
α→α0

∫

M\Bx0 (δ) u
2
αdvg

∫

M u2
αdvg

= 0 (11.1.28)

In other words, we claim that L2-concentration holds for uα in any dimension when α0 = +∞.
In order to prove this claim we let 0 ≤ η ≤ 1 be a smooth increasing radially symmetric
function with respect to x0 such that η = 1 in M\Bx0(δ) and η = 0 in Bx0(δ/2). By the De
Giorgi-Nash-Moser iterative scheme, and by (11.1.10),

∫

M\Bx0 (δ)
u2

αdvg ≤ Cδ

∫

M
uαdvg

∫

M
ηuαdvg (11.1.29)

where Cδ > 0 is independent of α. Independently, thanks to (Eα), we have that

∫

M
uαdvg

∫

M
ηuαdvg =

1

α

∫

M
ηuα

(

µαu
2⋆−1
α − ∆guα

)

dvg (11.1.30)

Integrating by parts,

∫

M
ηuα∆guαdvg =

∫

M
η|∇uα|2dvg +

∫

M
(∇η∇uα)uαdvg

where (∇η∇uα) is the pointwise scalar product with respect to g of ∇η and ∇uα. Since
|(∇η∇uα)| ≤ |∇η||∇uα|, and by Hölder’s inequalities,

∫

M
|(∇η∇uα)| uαdvg ≤

√

∫

M
u2

αdvg

√

∫

Bx0 (δ)\Bx0 (δ/2)
|∇uα|2dvg

Coming back to (11.1.29) and (11.1.30), we get that

1

Cδ

∫

M\Bx0(δ)
u2

αdvg ≤
µα

α

∫

M
ηu2⋆

α dvg

+
1

α

√

∫

M
u2

αdvg

√

∫

M\Bx0 (δ/2)
|∇uα|2dvg

Noting that
∫

M
ηu2⋆

α dvg =
∫

M
(ηu2⋆−2

α )u2
αdvg

it follows from (11.1.10) that

lim
α→+∞

∫

M ηu2⋆

α dvg
∫

M u2
αdvg

= 0

Then, the proof of (11.1.28) reduces to the proof that for δ̂ > 0 small, there exists C > 0,
independent of α, such that

∫

M\Bx0 (δ̂)
|∇uα|2dvg ≤ C

∫

M
u2

αdvg (11.1.31)
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As above, let 0 ≤ η ≤ 1 be a smooth function such that η = 1 in M\Bx0(δ̂) and η = 0 in
Bx0(δ̂/2). Multiplying (Eα) by η2uα and integrating over M , we get that

∫

M
η2|∇uα|2dvg + 2

∫

M
ηuα (∇η∇uα) dvg ≤ µα

∫

M
η2u2⋆

α dvg

Therefore,
∫

M
η2|∇uα|2dvg ≤ C

∫

M
|η∇uα|uαdvg + µα

∫

M
η2u2⋆

α dvg

≤ C

√

∫

M
u2

αdvg

√

∫

M
η2|∇uα|2dvg + µα

∫

M
η2u2⋆

α dvg

and we get that

∫

M η2|∇uα|2dvg
∫

M u2
αdvg

≤ C

√

√

√

√

∫

M η2|∇uα|2dvg
∫

M u2
αdvg

+ µα

∫

M η2u2⋆

α dvg
∫

M u2
αdvg

Here again, by (11.1.10),

lim
α→+∞

∫

M ηu2⋆

α dvg
∫

M u2
αdvg

= 0

so that

lim sup
α→+∞

∫

M η2|∇uα|2dvg
∫

M u2
αdvg

≤ C2

In particular, (11.1.31) holds, and this completes the proof of (11.1.28).

STEP 5. We claim that if α0 < +∞ and n ≥ 4, then, for any δ > 0,

lim
α→α0

∫

M\Bx0 (δ) u
2
αdvg

∫

M u2
αdvg

= 0 (11.1.32)

In other words, we claim that L2-concentration holds for uα in dimension n ≥ 4 when α0 < +∞.
In order to prove this claim, we proceed as follows. We clearly have that

∫

M\Bx0 (δ)
u2

αdvg =
∫

M\Bx0 (δ)
Σαu

2
αdvg

Then, by the De Giorgi-Nash-Moser iterative scheme, and by (11.1.10),

∫

M\Bx0 (δ)
u2

αdvg ≤ C
∫

M
Σαdvg

(∫

M
uαdvg

)2

where C > 0 is independent of α. Integrating (Eα),

α
∫

M
uαdvg

∫

M
Σαdvg = µα

∫

M
u2⋆−1

α dvg (11.1.33)

By (11.1.33), and (11.1.7), we then get that
∫

M\Bx0 (δ)
u2

αdvg ≤ C
∫

M
uαdvg

∫

M
u2⋆−1

α dvg
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and hence that
∫

M\Bx0 (δ)
u2

αdvg ≤ C

√

∫

M
u2

αdvg

∫

M
u2⋆−1

α dvg (11.1.34)

where C > 0 is independent of α. First, we suppose that n ≥ 6. Then 2⋆ − 1 ≤ 2, and we get
by Hölder’s inequalities that

∫

M
u2⋆−1

α dvg ≤ V
3−2⋆

2
g

(∫

M
u2

αdvg

)
2⋆−1

2

where Vg is the volume of M with respect to g. Coming back to (11.1.34) gives

∫

M\Bx0 (δ)
u2

αdvg ≤ C
(∫

M
u2

αdvg

) 2⋆

2

Since 2⋆ > 2, and ‖uα‖2 → 0, we get that (11.1.32) holds when n ≥ 6. Now we suppose that
n = 5. Then 2 ≤ 2⋆ − 1 ≤ 2⋆, and we get by Hölder’s inequalities that

(∫

M
u2⋆−1

α dvg

) 1
2⋆−1 ≤

(∫

M
u2

αdvg

) s
2
(∫

M
u2⋆

α dvg

)
1−s
2⋆

where

s =
1

2⋆−1
− 1

2⋆

1
2
− 1

2⋆

=
3

2(2⋆ − 1)

Coming back to (11.1.34), and since ‖uα‖2⋆ = 1, we get that

∫

M\Bx0 (δ)
u2

αdvg ≤ C
(∫

M
u2

αdvg

)
5
4

Here again, ‖uα‖2 → 0. This proves (11.1.32) when n = 5. At last, we suppose that n = 4.
Then, 2⋆ = 4. We have that

∫

M u3
αdvg

√

∫

M u2
αdvg

≤ ‖uα‖L∞(M\Bxα(δ))

√

∫

M
u2

αdvg +

∫

Bxα(δ) u
3
αdvg

√

∫

Bxα(δ) u
2
αdvg

≤ εα +

∫

B0(δλ−1
α ) ũ

3
αdvg̃α

√

∫

B0(δλ−1
α ) ũ

2
αdvg̃α

where εα → 0 as α → α0, and ũα and g̃α are as in step 1. For any R > 0, we get by the
Cauchy-Schwarz inequality and (11.1.12) that

∫

B0(δλ
−1
α )

ũ3
αdvg̃α ≤

∫

B0(R)
ũ3

αdvg̃α + εR

√

∫

B0(δλ
−1
α )

ũ2
αdvg̃α

where εR → 0 as R → +∞. It follows from these equations and (11.1.15) that for any R > 0,

lim sup
α→α0

∫

M u3
αdvg

√

∫

M u2
αdvg

≤ εR +

∫

IR
n ũ3dx

√

∫

B0(R) ũ
2dx
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where ũ is as in (11.1.17). Noting that

lim
R→+∞

∫

B0(R)
ũ2dx = +∞

when n = 4, this proves (11.1.32) when n = 4.

Thanks to the estimates of steps 1 to 5, we are now in position to conclude the proof that
when n ≥ 4, (2.2) is true and (2.3) possesses extremal functions. As already mentioned, the
proof reduces to showing that (11.1.5) and (11.1.6) lead to a contradiction.

STEP 6. We claim that (11.1.5) and (11.1.6) lead to a contradiction. For δ > 0 small, and
x ∈ B0(δ), we set

gα(x) = exp⋆
xα
g(x) and vα(x) = uα

(

expxα
(x)
)

We let also η be a smooth cut-off function such that η = 1 in B0(δ/2), η = 0 in IRn\B0(δ),
|∇η| ≤ Cδ−1, and |∇2η| ≤ Cδ−2, where, as in what follows, C > 0 is a constant independent
of α and δ. By the definition of Kn,

(

∫

B0(δ)
(ηvα)2⋆

dx

)
2
2⋆

≤ Kn

∫

B0(δ)
|∇ (ηvα) |2dx (11.1.35)

We have that
∫

B0(δ)
|∇(ηvα)|2dx ≤

∫

B0(δ)
η2vα∆vαdx+ Cδ−2

∫

B0(δ)\B0(δ/2)
v2

αdx

and
∆vα = ∆gαvα + (gij

α − δij)∂ijvα − gij
α Γ(gα)k

ij∂kvα

where ∆ is the Euclidean Laplacian, δij is the Kroenecker symbol, and the Γ(gα)k
ij ’s are the

Christoffel symbols of the Levi-Civita connection with respect to gα. Hence,
∫

B0(δ)
|∇(ηvα)|2dx ≤

∫

B0(δ)
η2vα∆gαvαdx+ Cδ−2

∫

B0(δ)\B0(δ/2)
v2

αdx

+
∫

B0(δ)
η2vα(gij

α − δij)∂ijvαdx−
∫

B0(δ)
η2vαg

ij
α Γ(gα)k

ij∂kvαdx

Integrating by parts, and thanks to (Eα), we then get that
∫

B0(δ)
|∇(ηvα)|2dx ≤ 1

Kn

∫

B0(δ)
η2v2⋆

α dx− α
∫

M
uαdvg

∫

B0(δ)
η2vαdx

+Cδ−2
∫

B0(δ)\B0(δ/2)
v2

αdx−
∫

B0(δ)
η2(gij

α − δij)∂ivα∂jvαdx

+
1

2

∫

B0(δ)

(

∂k(g
ij
α Γ(gα)k

ij) + ∂ijg
ij
α

)

η2v2
αdx

By (11.1.35), this implies in particular that

0 ≤
∫

B0(δ)
η2v2⋆

α dx−
(

∫

B0(δ)
(ηvα)2⋆

dx

) 2
2⋆

+
1

2
Kn

∫

B0(δ)

(

∂k(g
ij
α Γ(gα)k

ij) + ∂ijg
ij
α

)

η2v2
αdx

−Kn

∫

B0(δ)
η2(gij

α − δij)∂ivα∂jvαdx+ Cδ−2
∫

B0(δ)\B0(δ/2)
v2

αdx

(11.1.36)
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By (11.1.28) and (11.1.32),

lim
α→α0

∫

B0(δ)\B0(δ/2) v
2
αdx

∫

B0(δ) v
2
αdx

= 0 (11.1.37)

Similarly, since xα → x0 as α→ α0, the Cartan expansion of g gives that

lim
α→α0

(

∂k(g
ij
α Γ(gα)k

ij) + ∂ijg
ij
α

)

(0) =
1

3
Sg(x0)

where Sg is the scalar curvature of g. By (11.1.28) and (11.1.32) we then get that

lim sup
α→α0

∫

B0(δ)

(

∂k(g
ij
α Γ(gα)k

ij) + ∂ijg
ij
α

)

η2v2
αdx

∫

B0(δ) v
2
αdx

=
1

3
Sg(x0) + εδ (11.1.38)

where εδ → 0 as δ → 0. Independently, we claim that when Sg(x0) ≤ 0,

lim sup
α→α0

∫

B0(δ) η
2v2⋆

α dx−
(

∫

B0(δ)(ηvα)2⋆
dx
) 2

2⋆

∫

B0(δ) v
2
αdx

≤ εδ (11.1.39)

where εδ → 0 as δ → 0. By Hölder’s inequalities we indeed do have that

∫

B0(δ)
η2v2⋆

α dx−
(

∫

B0(δ)
(ηvα)2⋆

dx

) 2
2⋆

≤




(

∫

B0(δ)
v2⋆

α dx

)(2⋆−2)/2⋆

− 1





(

∫

B0(δ)
(ηvα)2⋆

dx

)2/2⋆

and thanks to the Cartan expansion of g,

dx ≤
(

1 +
1

6
Rij(xα)xixj + C|x|3

)

dvgα

where the Rij(xα)’s are the components of the Ricci curvature at xα in the exponential chart.
It follows from these equations that

∫

B0(δ)
η2v2⋆

α dx−
(

∫

B0(δ)
(ηvα)2⋆

dx

)
2
2⋆

≤
(

1 + εδ

3n
Xα + εδ

∫

B0(δ)
|x|2v2⋆

α dvgα

)(

∫

B0(δ)
(ηvα)2⋆

dx

)2/2⋆

where
Xα = Rij(xα)

∫

B0(δ)
xixjv2⋆

α dvgα

By (11.1.18) we have that

∫

B0(δ)
|x|2v2⋆

α dvgα ≤ C
∫

B0(δ)
v2

αdvgα
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and by (11.1.27) we have that for any R > 0,

Rij(xα)
∫

B0(δ)\B0(Rλα)
xixjv2⋆

α dvgα ≤ εR

∫

B0(δ)
v2

αdvgα

where εR → 0 as R → +∞. Noting that

Rij(xα)
∫

B0(Rλα) x
ixjv2⋆

α dvgα
∫

B0(δ) v
2
αdvgα

=
Rij(xα)

∫

B0(R) x
ixj ũ2⋆

α dvg̃α
∫

B0(δλ−1
α ) ũ

2
αdvgα

where ũα and g̃α are as in step 1, and that
∫

B0(R)
xixj ũ2⋆

dx =
1

n
δij
∫

B0(R)
|x|2ũ2⋆

dx

where ũ is as in (11.1.17) and the δij’s are the Kroenecker symbols, we get that

lim sup
α→α0

1+εδ

3n
Xα + εδ

∫

B0(δ) |x|2v2⋆

α dvgα
∫

B0(δ) v
2
αdvgα

≤ εδ

when Sg(x0) ≤ 0. By (11.1.10) we also have that
∫

B0(δ)(ηvα)2⋆
dx→ 1 as α→ α0, and, combining

these equations, we get (11.1.39). At last, we refer to Druet [15] for details, it can be proved
with (11.1.27), (11.1.28) and (11.1.32) that for any R > 0,

lim sup
α→α0

∣

∣

∣

∫

B0(δ) η
2(gij

α − δij)∂ivα∂jvαdx
∣

∣

∣

∫

B0(δ) v
2
αdx

≤ εR + εδ +
C

Rn−4
lim sup

α→α0

1
∫

B0(δλ−1
α ) ũ

2
αdvg̃α

where εR → 0 as R → +∞, εδ → 0 as δ → 0, and ũα and g̃α are as in step 1. Noting that by
(11.1.15) and (11.1.16),

lim inf
α→α0

∫

B0(δλ−1
α )

ũ2
αdvg̃α ≥

∫

B0(R̃)
ũ2dx

for any R̃ > 0, where ũ is as in (11.1.17), and that if n = 4,

lim
R̃→+∞

∫

B0(R̃)
ũ2dx = +∞

it follows that

lim sup
α→α0

∫

B0(δ) η
2(gij

α − δij)∂ivα∂jvαdx
∫

B0(δ) v
2
αdx

= εδ (11.1.40)

where εδ → 0 as δ → 0. Combining (11.1.36)-(11.1.40) we then get that

1

6
KnSg(x0) + εδ ≥ 0 (11.1.41)

where εδ → 0 as δ → 0. Since Sg(x0) < 0, (11.1.41) is impossible, and the contradiction
follows. As already mentioned, this proves the second part of Theorem 4.1 and the first part
of Theorem 4.4, namely that when n ≥ 4, (2.2) is true and (2.3) possesses extremal functions
on any smooth compact Riemannian n-manifold of negative scalar curvature.

As one can easily check, the above arguments give also that the set of the extremal functions
for (2.3) is compact, for instance in the C1-topology.
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11.2 Nonpositive scalar curvature

We prove the second part of Theorem 4.2, namely that when n ≥ 4, (2.2) is true on any
smooth compact conformally flat Riemannian n-manifold of nonpositive scalar curvature. We
follow the lines of subsection 11.1 so that we can present L1-concentration. However, in this
specific case, an easier argument exists, based on localisation (Proposition 9.1 above) and
conformal invariance (see also Proposition 2.2 in Schoen and Yau [36]). We let (M, g) be a
smooth compact conformally flat Riemannian n-manifold of nonpositive scalar curvature, and
we assume by contradiction that (11.1.5) holds for all α ∈ (0,+∞). Then the results of sections
7 and 8 hold. As in section 7, (11.1.5) leads to the existence of a minimizer uα ∈ H2

1 (M), uα ≥ 0
and of norm 1 in L2⋆

(M). If µα stands for the infimum in (11.1.5), one has that

∆guα + α(
∫

M
uαdvg)Σα = µαu

2⋆−1
α (Eα)

where Σα ∈ L∞(M) is such that 0 ≤ Σα ≤ 1 and Σαϕ = ϕ for any ϕ ∈ H2
1 (M) having the

property that |ϕ| ≤ Cuα on M for some constant C > 0. Moreover, uα is in C1,λ for any
λ ∈ (0, 1), and the sequence (uα) is bounded in H2

1 (M). We also have that,

lim
α→+∞

µα =
1

Kn
(11.2.1)

and
lim

α→+∞
α‖uα‖2

1 = 0 (11.2.2)

Moreover, we may assume that (uα) has one and only one concentration point x0, we may
assume that for any δ > 0,

lim
α→+∞

∫

Bx0 (δ)
u2⋆

α dvg = 1 (11.2.3)

and we may assume that
uα → 0 in C0

loc(M\{x0}) (11.2.4)

as α goes to +∞. As already mentioned, we necessarily have that

lim
α→+∞

∫

M
u2

αdvg = 0 (11.2.5)

In particular the estimates of steps 1 to 5 of the preceding subsection hold. In addition to these
estimates, we claim that L1-concentration holds also for the uα’s. In other words, we claim
that for any δ > 0,

lim
α→+∞

∫

M\Bx0 (δ) uαdvg
∫

M uαdvg
= 0 (11.2.6)

In order to prove this claim we let 0 ≤ η ≤ 1 be a smooth function such that η = 1 in M\Bx0(δ)
and η = 0 in Bx0(δ/2). We have that

∫

M
uαdvg

∫

M\Bx0 (δ)
uαdvg ≤

∫

M
uαdvg

∫

M
ηuαdvg (11.2.7)
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and as when proving the estimate of step 4 of the preceding section, we get by the De Giorgi-
Nash-Moser iterative scheme that

∫

M
uαdvg

∫

M
ηuαdvg =

1

α

∫

M
ηuα

(

µαu
2⋆−1
α − ∆guα

)

dvg

≤ 1

α
µα

∫

M
ηu2⋆

α dvg +
1

α

∫

M
|(∇η∇uα)|uαdvg

≤ εα

(∫

M
uαdvg

)2

+
C

α

√

∫

M\Bx0 (δ/2)
|∇uα|2dvg

∫

M
uαdvg

(11.2.8)

where εα → 0 as α→ +∞, and C > 0 is independent of α. The proof of (11.2.6) then reduces
to the proof that for δ̂ > 0 small, there exists C > 0, independent of α, such that

∫

M\Bx0 (δ̂)
|∇uα|2dvg ≤ C

(
∫

M
uαdvg

)2

(11.2.9)

As above, let 0 ≤ η ≤ 1 be a smooth function such that η = 1 in M\Bx0(δ̂) and η = 0 in
Bx0(δ̂/2). Multiplying (Eα) by η2uα and integrating over M , we get that

∫

M
η2|∇uα|2dvg + 2

∫

M
ηuα (∇η∇uα) dvg ≤ µα

∫

M
η2u2⋆

α dvg

Therefore, by the De Giorgi-Nash-Moser iterative scheme,

∫

M
η2|∇uα|2dvg ≤ C

∫

M
|η∇uα|uαdvg + µα

∫

M
η2u2⋆

α dvg

≤ C
∫

M
uαdvg

√

∫

M
η2|∇uα|2dvg + µα

∫

M
η2u2⋆

α dvg

and we get that

∫

M η2|∇uα|2dvg

(
∫

M uαdvg)
2 ≤ C

√

√

√

√

∫

M η2|∇uα|2dvg

(
∫

M uαdvg)
2 + µα

∫

M η2u2⋆

α dvg

(
∫

M uαdvg)
2

By the De Giorgi-Nash-Moser iterative scheme that we apply once again,

lim
α→+∞

∫

M ηu2⋆

α dvg

(
∫

M uαdvg)
2 = 0

and it follows that

lim sup
α→+∞

∫

M η2|∇uα|2dvg

(
∫

M uαdvg)
2 ≤ C2

In particular, (11.2.9) holds, and we get from (11.2.7) and (11.2.8) that (11.2.6) holds also.
This proves that L1-concentration holds for the uα’s, and the above claim.

We proceed now with the proof that when n ≥ 4, (2.2) is true on any smooth compact
conformally flat Riemannian n-manifold of nonpositive scalar curvature. In other words, we
proceed with the proof that (11.1.5) leads to a contradiction. Since (M, g) is conformally flat,
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there exists ϕ ∈ C∞(M), ϕ > 0, such that g̃ = ϕ4/(n−2)g is flat around x0. Set vα = ϕ−1uα. By
conformal invariance of the conformal Laplacian,

∆g̃vα +

(

α
∫

M
uαdvgΣα − n− 2

4(n− 1)
Sguα

)

ϕ−n+2
n−2 = µαv

2⋆−1
α (11.2.10)

We let δ > 0 be such that g̃ is flat in Bx0(2δ), the ball with respect to g̃ of center x0 and radius
2δ, and we assimilate Bx0(2δ) and g̃ with B0(2δ) and ξ, where ξ is the Euclidean metric. We let
also 0 ≤ η ≤ 1 be a smooth cut-off function such that η = 1 in B0(δ/2) and η = 0 in IRn\B0(δ).
By the defintion of Kn,

(

∫

B0(δ)
(ηvα)2⋆

dx

) 2
2⋆

≤ Kn

∫

B0(δ)
|∇ (ηvα) |2dx (11.2.11)

and we have that
∫

B0(δ)
|∇(ηvα)|2dx ≤

∫

B0(δ)
η2vα∆vαdx+ C

∫

B0(δ)\B0(δ/2)
v2

αdx

where C > 0 is independent of α. Hence, by (11.2.10), (11.2.11), and since Sg ≤ 0,

(

∫

B0(δ)
(ηvα)2⋆

dx

) 2
2⋆

+ αKn

∫

M
uαdvg

∫

B0(δ)
η2ϕ−2⋆

uαdx

≤ µαKn

∫

B0(δ)
η2v2⋆

α dx+ C
∫

B0(δ)\B0(δ/2)
v2

αdx

(11.2.12)

On the one hand, µαKn ≤ 1. On the other hand, it follows from Hölder’s inequalities that

∫

B0(δ)
η2v2⋆

α dx−
(

∫

B0(δ)
(ηvα)2⋆

dx

) 2
2⋆

≤




(

∫

B0(δ)
v2⋆

α dx

)1− 2
2⋆

− 1





(

∫

B0(δ)
(ηvα)2⋆

dx

) 2
2⋆

Moreover,
∫

B0(δ)
v2⋆

α dx =
∫

Bx0 (δ)
u2⋆

α ϕ
−2⋆

dvg̃ ≤
∫

M
u2⋆

α dvg = 1

and it follows that

µαKn

∫

B0(δ)
η2v2⋆

α dx−
(

∫

B0(δ)
(ηvα)2⋆

dx

)
2
2⋆

≤ 0

Coming back to (11.2.12), we then get that

αKn

∫

M
uαdvg

∫

B0(δ)
η2ϕ−2⋆

uαdx ≤ C
∫

B0(δ)\B0(δ/2)
v2

αdx (11.2.13)

We have that ∫

B0(δ)
η2ϕ−2⋆

uαdx ≥
∫

Bx0(δ̂)
uαdvg
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for some δ̂ > 0 small, and by the De Giorgi-Nash-Moser iterative scheme, there exists C > 0,
independent of α, such that for δ̂ > 0 sufficiently small,

∫

B0(δ)\B0(δ/2)
v2

αdx ≤ C
∫

M
uαdvg

∫

M\Bx0 (δ̂)
uαdvg

By (11.2.13) we then get that

αKn ≤ C

∫

M\Bx0 (δ̂) uαdvg
∫

Bx0 (δ̂) uαdvg
(11.2.14)

while by (11.2.6), the right hand side of (11.2.14) goes to 0 as α → +∞. A contradiction, so
that, as already mentioned, (2.2) is true if (M, g) is conformally flat and the scalar curvature
of g is nonpositive.

11.3 Arbitrary energies

In order to fix ideas, we let (T n, g) be a compact flat torus of dimension n ≥ 3, and we consider
the following equation

∆gu+ α‖u‖1Σ = u2⋆−1 (Eα)

where u ∈ H2
1 (T n), u ≥ 0, and Σ ∈ L∞(T n), 0 ≤ Σ ≤ 1, are such that Σu = u, and where

α > 0. By standard regularity results, if (Σ, u) is a solution of (Eα), then u ∈ Hp
2 (T n) for all

p > 1. In particular, u ∈ C1,β(T n) for all β ∈ (0, 1). We let

Sα =
{

(Σα, uα) s.t. (Eα) holds
}

and, following Hebey [26], we define the energy function Em by

Em(α) = inf
(Σ,u)∈Sα

‖u‖2⋆ (11.3.1)

Noting that
(

1, (Vgα)(n−2)/4
)

∈ Sα, where Vg is the volume of T n with respect to g, we easily get

that Em(α) ≤ V (n2−4)/4n
g α(n−2)/4. The above construction can be done on arbitrary compact

Riemannian manifolds (M, g). In this case, it easily follows from the test functions arguments
developed in section 6 and from Proposition 7.1 that Em(α) ≤ K−(n−2)/4

n if n ≥ 4 and Sg > 0
somewhere. We prove here that the following proposition holds, and refer to the remark at the
end of this subsection for possible extensions of this result.

Proposition 11.1 Let (T n, g) be a compact flat torus of dimension n ≥ 3. Then

lim
α→+∞

Em(α) = +∞

where Em is the energy function defined in (11.3.1).

Flat torii are interesting since they can be seen as the limit case of manifolds of nonnegative
and nonzero curvature, a class for which, as already mentioned, the energy function is bounded.
We prove Proposition 11.1 in what follows. We proceed by contradiction, and thus assume that
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there exists a sequence (Σα, uα) in Sα such that ‖uα‖2⋆ ≤ Λ for some Λ > 0 and all α. Letting
ûα = ‖uα‖−1

2⋆ uα, we get that ‖ûα‖2⋆ = 1 and that

∆gûα + α‖ûα‖1Σα = µαû
2⋆−1
α (11.3.2)

where µα = ‖uα‖4/(n−2)
2⋆ . In particular, µα ≤ Λ4/(n−2). We also have that Σαûα = ûα. As in

section 8, following standard terminology, we say that x ∈ T n is a concentration point for the
sequence (Σα, ûα) if for any δ > 0,

lim sup
α→+∞

∫

Bx(δ)
û2⋆

α dvg > 0

Multiplying (Êα) by ûα, and integrating over T n, we see that ‖ûα‖1 → 0 as α → +∞. It
follows that (Σα, ûα) has at least one concentration point. We let S be the set of the concen-
tration points for (Σα, ûα). Mimicking what we did in section 8, another possible reference is
Druet-Hebey-Vaugon [20], it is easily seen that the two following propositions hold: up to a
subsequence,

S = {x1, . . . , xp} is finite, and

ûα → 0 in C0
loc(T

n\S).
(11.3.3)

In a similar way, mimicking what we did in subsection 11.2, we easily get that for any δ > 0,

lim
α→+∞

∫

T n\Bδ
ûαdvg

∫

T n ûαdvg

= 0 (11.3.4)

where Bδ is the union of the Bxi
(δ)’s, i = 1, . . . , p. We also get that

∫

T n\Bδ

(

|∇ûα|2 + û2
α

)

dvg ≤ C
(∫

T n
ûαdvg

)2

(11.3.5)

where C > 0 is independent of α. Concerning terminology, we refer to (11.3.4) as global L1-
concentration. Now we fix xi ∈ S. Since g is flat, we can assimilate g with the Euclidean metric
ξ around xi. Given δ > 0 sufficiently small, we let 0 ≤ η ≤ 1 be a smooth cut-off function such
that η = 1 in B0(δ/2) and η = 0 in IRn\B0(δ). Thanks to the Pohozaev identity [33],

2
∫

IR
n

(

xk∂k(ηûα)
)

∆(ηûα)dx+ (n− 2)
∫

IR
n
ηûα∆(ηûα)dx ≤ 0 (11.3.6)

Such an equation makes sense since ûα ∈ C1,β, 0 < β < 1, and ûα ∈ Hp
2,loc, p > 1. Integrating

by parts, we easily get that

∫

IR
n

(

xk∂k(ηûα)
)

∆(ηûα)dx =
∫

IR
n
η2
(

xk∂kûα

)

∆ûαdx+ R(α)
∫

IR
n
ηûα∆(ηûα)dx =

∫

IR
n
η2ûα∆ûαdx+ R1(α)

(11.3.7)

where
|R1(α)| ≤ C1

∫

B0(δ)\B0(δ/2)
|∇ûα|2dx+ C2

∫

B0(δ)\B0(δ/2)
û2

αdx (11.3.8)
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and C1, C2 > 0 are independent of α. We have that Σαûα = ûα. Thus, Σα = 1 when ûα > 0.
Let f be a smooth function with compact support in B0(2δ). Noting that the set of the x’s
which are such that ûα(x) = 0 and |∇ûα|(x) 6= 0 is a hypersurface in T n, and thus of measure
zero, we can write that for any k,

∫

{|∇ûα|6=0}
f(∂kûα)Σαdx =

∫

{ûα>0,|∇ûα|6=0}
f(∂kûα)Σαdx

=
∫

{ûα>0,|∇ûα|6=0}
f(∂kûα)dx

=
∫

{|∇ûα|6=0}
f(∂kûα)dx

It follows that for any smooth function f with compact support in B0(2δ), and for any k,
∫

IR
n
f(∂kûα)Σαdx =

∫

IR
n
f(∂kûα)dx (11.3.9)

Thanks to (11.3.2) and (11.3.9),
∫

IR
n
η2
(

xk∂kûα

)

∆ûαdx = µα

∫

IR
n
η2(xk∂kûα)û2⋆−1

α dx− α
∫

T n
ûαdvg

∫

IR
n
η2(xk∂kûα)dx

while, thanks to (11.3.2),
∫

IR
n
η2ûα∆ûαdx = µα

∫

IR
n
η2û2⋆

α dx− α
∫

T n
ûαdvg

∫

IR
n
η2ûαdx

Integrating by parts,

∫

IR
n
η2(xk∂kûα)û2⋆−1

α dx = − 2

2⋆

∫

IR
n
η(xk∂kη)û

2⋆

α dx−
n− 2

2

∫

IR
n
η2û2⋆

α dx

and ∫

IR
n
η2(xk∂kûα)dx = −2

∫

IR
n
η(xk∂kη)ûαdx− n

∫

IR
n
η2ûαdx

Combining these equations, and thanks to (11.3.7), we get that

2
∫

IR
n

(

xk∂k(ηûα)
)

∆(ηûα)dx+ (n− 2)
∫

IR
n
ηûα∆(ηûα)dx

= (n+ 2)α
∫

T n
ûαdvg

∫

IR
n
η2ûαdx+ R1(α) + αR2(α)

∫

T n
ûαdvg

where R1(α) is as in (11.3.8), and where, thanks to (11.3.3) and the De Giorgi-Nash-Moser
iterative scheme, R2(α) is such that

|R2(α)| ≤ C3

∫

B0(δ)\B0(δ/2)
ûαdx

where C3 > 0 is independent of α. Coming back to (11.3.6), summing over the xi’s in S, and
thanks to (11.3.5), we have proved that for δ > 0 sufficiently small,

α
∫

T n
ûαdvg

∫

Bδ

ûαdvg ≤ C4

(∫

T n
ûαdvg

)2

+ C5α
∫

T n
ûαdvg

∫

T n\Bδ

ûαdvg (11.3.10)
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where C4, C5 > 0 are independent of α. In particular, it follows from (11.3.10) that

α

∫

Bδ
ûαdvg

∫

T n ûαdvg
≤ C4 + C5α

∫

T n\Bδ
ûαdvg

∫

T n ûαdvg

Letting α → +∞ we then get our contradiction thanks to (11.3.4). This proves Proposition
11.1.

The above proof extends to compact conformally flat Riemannian manifolds which are scalar
flat. A possible example of such a manifold, which is not a flat torus, neither the quotient of a
flat torus, consists in the product of the unit sphere with a compact hyperbolic space of the same
dimension. In particular, if M is the class of compact Riemannian manifolds of nonnegative
and nonzero curvature, and if ∂C2M is its boundary with respect to the C2-topology, then
Em is (uniformly) bounded in M, but unbounded on ∂C2M. Independently, using global L2-
concentration instead of global L1-concentration, and conformal invariance, it is easily checked
that a slight modification of the above proof gives that the conclusion of Proposition 11.1 still
holds for compact conformally flat Riemannian manifolds of dimension n ≥ 3 and negative
scalar curvature. Open questions on Em can be found in Hebey [26].

12 Asymptotics when the scalar curvature is positive

somewhere

We prove the second part of Theorem 4.4. This is by far the most difficult part in Theorems
4.1 to 4.4. We separate this section into three subsections. The first subsection concerns the
study of a closely related problem in the Euclidean context. A test function type argument,
based on what is proved in subsection 12.1, is developed in subsection 12.2. The general case
of an arbitrary compact Riemannian manifold is treated in subsection 12.3.

12.1 The Euclidean case

Let B be the unit ball in IRn, n ≥ 4, and ∆ = −div(∇) be the Euclidean Laplacian. We let
C∞

0 (B) be the set of smooth functions with compact support in B, and H2
0,1(B) be the standard

Sobolev space defined as the completion of C∞
0 (B) with respect to the norm ‖u‖ = ‖∇u‖2.

Given α > 0 and B > 0, we define λB by

λB = inf
u∈C∞

0 (B)\{0}

‖∇u‖2
2 − α‖u‖2

2 +B‖u‖2
1

‖u‖2
2⋆

(12.1.1)

For δ > 0 small, let uδ be the function of H2
0,1(B) defined by

uδ(x) =
(

δ + |x|2
)1−n

2 − (δ + 1)1−n
2

Taking the uδ’s as test functions, it is easily seen that for any B > 0, λB < 1
Kn

. On such
developments, we refer to Druet-Hebey-Vaugon [19] and Hebey [25]. Now we claim that the
following holds:
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(i) λB is continuous in B and increasing in B ,
(ii) λB → 1

Kn
as B → +∞.

Point (i) is easy to get. Just note that if B2 = B1 + η, η ≥ 0, then

λB1 ≤ λB2 ≤ λB1 + ηV
2(2⋆−1)

2⋆

B

where VB is the volume of B. Concerning point (ii), let B > 0 be given. Since K−1
n is the

minimum energy for blow up, and λB < K−1
n , classical variational methods lead to the existence

of a minimizer for λB. In particular, we refer to section 7, there exists uB ∈ C1,δ(B), δ ∈ (0, 1),
uB ≥ 0 in B and uB = 0 on ∂B, such that

∆uB − αuB +B‖uB‖1ΣB = λBu
2⋆−1
B (12.1.2)

and
∫

B u
2⋆

B dx = 1, where ΣB ∈ L∞(B) is such that 0 ≤ ΣB ≤ 1 and ΣBuB = uB. Multiplying
(12.1.2) by uB and integrating over B, we get that B‖uB‖2

1 ≤ λB. As a consequence, uB → 0 in
L1(B) as B → +∞. This implies that blow up occurs as B → +∞, and thus that λB → K−1

n

as B → +∞. Points (i) and (ii) above are proved.

Given ε > 0 small, we let Bε > 0 be such that

λBε =
1 − ε

Kn
(12.1.3)

The goal in this section is to describe the asymptotic behavior of Bε in terms of ε as ε → 0.
More precisely, we want to prove that

lim
ε→0

Bε

| ln ε|3 =
3

32ω3
α3 (12.1.4)

when n = 4, and

lim
ε→0

Bεε
(n−4)(n+2)

2(n−2) = Cn

(

4(n− 1)

n− 2
α

)
n+2

2

(12.1.5)

when n ≥ 5, where

Cn =
2n(n + 2)ω

2+ 4
n

n

ω
2n

n−2

n−1 (4n−3n(n− 2)(n− 4))
n+2
n−2

By standard symmetrization arguments, based on the co-area formula, functions in (12.1.1) can
be assumed to be radially symmetrical and decreasing. As above, we then get the existence of
a decreasing radially symmetrical function uε ∈ C1,δ(B), δ ∈ (0, 1), uε ≥ 0 in B and uε = 0 on
∂B, such that

∆uε − αuε +Bε‖uε‖1Σε =
1 − ε

Kn
u2⋆−1

ε (12.1.6)

and
∫

B u
2⋆

ε dx = 1. There, see section 7, Σε ∈ L∞(B) is such that Σε = 1 if uε > 0, and Σε = 0
if uε = 0. In particular, there exists rε ∈ (0, 1] such that Suppuε = B0(rε), where B0(rε) is the
Euclidean ball of center 0 and radius rε. Then,

Σε = 1 in B0(rε) and Σε = 0 in B\B0(rε) (12.1.7)
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and, as a consequence, uε is smooth around 0. Since for any B, λB < K−1
n , we have that

Bε → +∞ as ε → 0. Independently, multiplying (12.1.6) by uε and integrating over B, we see
that Bε‖uε‖2

1 is bounded as ε → 0. By the preceding remark, this implies that ‖uε‖1 → 0 as
ε → 0. Thus blow up must occur, and we are lead to the study of the asymptotic behavior of
the uε’s. A somehow similar problem was studied in Adimurthi-Pacella-Yadava [1]. This paper
was concerned with the standard Euclidean sharp Sobolev inequality with Neumann boundary
condition. As a starting point in the proof of (12.1.4) and (12.1.5) we prove weak estimates on
the uε’s.

12.1.1 Weak Estimates

We let µε > 0 be given by

uε(0) = ‖uε‖∞ = µ
1−n

2
ε (12.1.8)

Then, µε → 0 as ε → 0. Since ∆uε(0) ≥ 0 and Σε(0) = 1, (12.1.6) gives that

Bε‖uε‖1 ≤ αµ
1−n

2
ε +

1 − ε

Kn

µ
−1−n

2
ε

Thus,

Bε‖uε‖1µ
1+ n

2
ε ≤ 2

Kn
(12.1.9)

for ε > 0 sufficiently small. Now, we let ũε be defined by

ũε(x) = µ
n
2
−1

ε uε(µεx)

It is easily seen that

∆ũε − αµ2
εũε +Bε‖uε‖1µ

n
2
+1

ε Σ̃ε =
1 − ε

Kn
ũ2⋆−1

ε (12.1.10)

in B0(µ
−1
ε ), where Σ̃ε(x) = Σε(µεx). Noting that ũε ≤ 1, and thanks to (12.1.9), we get by

standard elliptic theory that the ũε’s are equicontinuous on any compact subset of IRn. By
Ascoli’s theorem we then get that there exists u0 ∈ C0(IRn) such that, after passing to a
subsequence,

ũε → u0 in C0
loc(IR

n) (12.1.11)

Clearly, u0(0) = 1, and we have that u0 ∈ D2
1(IR

n), where D2
1(IR

n) is the homogeneous Eu-
clidean Sobolev space. Up to a subsequence, we define Σ0 by

Σ0(x) = lim
ε→0

Bε‖uε‖1µ
1+ n

2
ε Σε(µεx)

Assuming that rε

µε
→ R as ε → 0, and that Bε‖uε‖1µ

1+ n
2

ε → A as ε → 0, we then have that

Σ0 = 0 if R = 0, Σ0 = A if R = +∞, and Σ0 = A1IB0 (R) if R ∈ (0,+∞), where 1IX stands for
the characteristic function of a subset X of IRn. It is easily seen that u0 is a solution in IRn of
the equation

∆u0 + Σ0 =
1

Kn
u2⋆−1

0 (12.1.12)
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We claim that this implies that Σ0 = 0. When R ∈ (0,+∞), such a claim easily follows from
the Pohozaev identity [33]. Note that in this case, u0 is compactly supported in B0(R). Let us
assume now that R = +∞ and A > 0. Multiplying (12.1.10) by ũε and integrating, we easily
get that u0 ∈ L1(IRn). By standard regularity results, we also have that u0 is C2,k, k ∈ (0, 1).
We let η be a smooth cut-off function such that 0 ≤ η ≤ 1, η = 1 if |x| ≤ 1, and η = 0 if
|x| ≥ 2. For r > 0, we let also ηr be given by

ηr(x) = η
(

x

r

)

The Pohozaev identity [33], applied to ηru0, gives that

2
∫

IR
n
(∇(ηru0), x) ∆(ηru0)dx+ (n− 2)

∫

IR
n
ηru0∆(ηru0)dx ≤ 0 (12.1.13)

Moreover, (∇ηr) (x) = 1
r
∇η

(

x
r

)

and (∆ηr) (x) = 1
r2 ∆η

(

x
r

)

. Integrating by parts, using the

Lebesgue dominated convergence theorem, and thanks to (12.1.12),

∫

IR
n
(∇(ηru0), x) ∆(ηru0)dx = −n− 2

2Kn

∫

IR
n
η2

ru
2⋆

0 dx+ nA
∫

IR
n
η2

ru0dx+ o(1)

∫

IR
n
ηru0∆(ηru0)dx =

1

Kn

∫

IR
n
η2

ru
2⋆

0 dx− A
∫

IR
n
η2

ru0dx+ o(1)

where o(1) → 0 as r → +∞. Coming back to (12.1.13), it follows that

A
∫

IR
n
η2

ru0dx ≤ o(1)

and, passing to the limit as r → +∞, we get a contradiction. Thus, A = 0 if R = +∞, and
this proves the above claim. In particular, u0 is a solution of the equation

∆u0 =
1

Kn

u2⋆−1
0

By Caffarelli-Gidas-Spruck [8], and also Obata [32], it follows that

u0(x) =





1

1 + ω
2/n
n

4
|x|2





n−2
2

Noting that Suppũε ⊂ B0(
rε

µε
), we get that rε

µε
→ +∞ as ε→ 0. Another consequence is that

lim
R→+∞

lim
ε→0

∫

B0(Rµε)
u2⋆

ε dx = 1 (12.1.14)

We claim that (12.1.14) implies in turn that the two following estimates hold. On the one hand,
there exists C > 0 such that for any ε > 0 and any x ∈ B,

|x|n
2
−1uε(x) ≤ C (12.1.15)
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On the other hand,
lim

R→+∞
lim
ε→0

sup
B\B0(Rµε)

|x|n
2
−1uε(x) = 0 (12.1.16)

We prove (12.1.15). Let vε be defined by

vε(x) = |x|n
2
−1uε(x)

We assume by contradiction that for some subsequence, ‖vε‖∞ → +∞ as ε → 0. Let xε be a
point in B where vε is maximum. A straitghforward consequence of (12.1.14) is that for x 6= 0,
and δ > 0 sufficiently small,

∫

Bx(δ)
u2⋆

ε dx→ 0

as ε → 0. Let x ∈ B, x 6= 0, and η be a smooth cut-off function around x. Multiplying (12.1.6)
by η2uk

ε , k ≥ 1, and integrating over B, it is easily seen, see for instance section 8, that for
δ > 0 sufficiently small, the uε’s are bounded in L(2⋆)2/2 (Bx(δ)). Since (2⋆)2/2 > 2⋆, it follows
from the De Giorgi-Nash-Moser iterative scheme and (12.1.6) that

uε → 0 in C0
loc(B\{0}) (12.1.17)

as ε → 0. In particular, (12.1.17) implies that xε → 0 as ε → 0. Since uε(xε) ≤ uε(0) and
‖vε‖∞ → +∞, we also have that

|xε|
µε

→ +∞ (12.1.18)

as ε→ 0, and that uε(xε) → +∞ as ε→ 0. We set

Ωε = uε(xε)
2

n−2B−xε(1)

and for x ∈ Ωε, we set

ṽε(x) = uε(xε)
−1uε

(

xε + uε(xε)
− 2

n−2x
)

It is easily seen that for ε > 0 small, and all x ∈ B0(2),

∣

∣

∣xε + uε(xε)
− 2

n−2x
∣

∣

∣ ≥ 1

2
|xε| (12.1.19)

Then, for all x ∈ B0(2),

ṽε(x) ≤ 2
n
2
−1|xε|1−

n
2 uε(xε)

−1vε

(

xε + uε(xε)
− 2

n−2x
)

≤ 2
n
2
−1|xε|1−

n
2 uε(xε)

−1vε(xε)

so that for ε > 0 small,
sup

x∈B0(2)
ṽε(x) ≤ 2

n
2
−1 (12.1.20)

Let R > 0 be given. By (12.1.18) and (12.1.19),

Bxε

(

2uε(xε)
− 2

n−2

)

∩ B0 (Rµε) = ∅ (12.1.21)
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for ε > 0 small. Noting that

∫

B0(2)
ṽ2⋆

ε dx =
∫

Bxε(2uε(xε)
− 2

n−2 )
u2⋆

ε dx

it follows from (12.1.14) and (12.1.21) that

∫

B0(2)
ṽ2⋆

ε dx→ 0 (12.1.22)

as ε→ 0. As is easily checked,

∆ṽε − αuε(xε)
−4/(n−2)ṽε ≤

1 − ε

Kn
ṽ2⋆−1

ε

The De Giorgi-Nash-Moser iterative scheme, (12.1.20) and (12.1.22) then give that

sup
x∈B0(1)

ṽε(x) → 0

as ε→ 0. Since ṽε(0) = 1, we get a contradiction. This proves (12.1.15). The proof of (12.1.16),
that we omit here, goes in the same way. On such a claim, see Druet [13], or subsection 12.1.3
below.

Going on with the asymptotic study of the uε’s, we claim that rε → 0 as ε → 0. We let
δ > 0 and η ∈ C∞

0 (B) be such that η = 0 in B0(
δ
2
), η = 1 in B0(

1
2
)\B0(δ). Multiplying (12.1.6)

by η and integrating over B, we get with (12.1.17) that

Bε‖uε‖1

∫

B
ηΣεdx =

1 − ε

Kn

∫

B
ηu2⋆−1

ε dx+ α
∫

B
ηuεdx−

∫

B
(∆η)uεdx

= O (‖uε‖1)

Since Bε → +∞ as ε → 0, it follows that
∫

B ηΣεdx→ 0 as ε → 0. In particular,

∫

B0(
1
2
)\B0(δ)

Σεdx→ 0

as ε → 0, and since this holds for any δ > 0, we get that rε → 0 as ε → 0. Now we prove
stronger estimates than (12.1.15) and (12.1.16).

12.1.2 Strong Estimates

We define Lε by

Lεu = ∆u− αu− 1 − ε

Kn
u2⋆−2

ε u

Letting δ > 0 sufficiently small so that ∆ − α is coercive on B0(δ), we claim first that Lε

satisfies the maximum principle on B0(δ)\B0(Rµε) for R > 0 large and ε > 0 small. Let
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indeed z ∈ C1
(

B0(δ)\B0(Rµε)
)

be such that z ≥ 0 on ∂ (B0(δ)\B0(Rµε)) and Lεz ≥ 0. Set

z− = max(0,−z). Then,

0 ≤
∫

B0(δ)\B0(Rµε)
z−Lεzdx

= −‖∇z−‖2
L2(B0(δ)\B0(Rµε)) + α‖z−‖2

L2(B0(δ)\B0(Rµε))

+
1 − ε

Kn

∫

B0(δ)\B0(Rµε)
u2⋆−2

ε (z−)2dx

while, thanks to Hölder’s inequality,

∫

B0(δ)\B0(Rµε)
u2⋆−2

ε (z−)2dx ≤ ‖uε‖2⋆−2
L2⋆(B0(δ)\B0(Rµε))

‖z−‖2
L2⋆(B0(δ)\B0(Rµε))

Thus,
0 ≤ −‖∇z−‖2

L2(B0(δ)\B0(Rµε)) + α‖z−‖2
L2(B0(δ)\B0(Rµε))

+
1 − ε

Kn
‖uε‖2⋆−2

L2⋆(B0(δ)\B0(Rµε))
‖z−‖2

L2⋆ (B0(δ)\B0(Rµε))

(12.1.23)

By (12.1.14),
lim

R→+∞
lim
ε→0

‖uε‖L2⋆(B0(δ)\B0(Rµε)) = 0

It follows that for any A > 0, there exist εA > 0 and RA > 0 such that for R ≥ RA and
ε ∈ (0, εA),

‖uε‖L2⋆ (B0(δ)\B0(Rµε)) ≤ A

Let B > 0, given by the coercivity of L = ∆ − α on B0(δ), be such that

B‖z−‖2
L2⋆ (B0(δ)\B0(Rµε)) ≤ ‖∇z−‖2

L2(B0(δ)\B0(Rµε)) − α‖z−‖2
L2(B0(δ)\B0(Rµε))

Coming back to (12.1.23), we have

0 ≤ ‖z−‖2
L2⋆ (B0(δ)\B0(Rµε))

(

1 − ε

Kn
A2⋆−2 − B

)

Choosing A > 0 small, this implies that z− = 0. The claim is proved. From now on, we let
c > 0 be such that L̃ = ∆ − (α + c) is coercive on B0(δ). We let also G be the Green function
of L̃ in B0(δ) with zero Dirichlet boundary condition, and set H(x) = G(0, x). We fix ν > 0
small, sufficiently small so that (1 − ν)c− να > 0. Then, in B0(δ)\{0},

LεH
1−ν

H1−ν
= ν(1 − ν)

|∇H|2
H2

+ α0 −
1 − ε

Kn
u2⋆−2

ε (12.1.24)

where α0 > 0 is given by α0 = (1 − ν)c − να. An easy property of the Green function is that
there exists C0 > 0 and ρ0 > 0 such that for |x| ≤ ρ0,

|∇H|2
H2

≥ C0

|x|2
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Thanks to (12.1.16), for R > 0 large and ε > 0 small,

ν(1 − ν)C0

|x|2 ≥ 1 − ε

Kn
u2⋆−2

ε

in B0(δ)\B0(Rµε). Coming back to (12.1.24), it follows that LεH
1−ν ≥ 0 in the annulus

B0(ρ0)\B0(Rµε). By (12.1.17), since α0 > 0, we also have that for ε > 0 small, LεH
1−ν ≥ 0

outside B0(ρ0). Hence, LεH
1−ν ≥ 0 in B0(δ)\B0(Rµε) provided that R > 0 is large and ε > 0

is small. We fix R > 0 large. By (12.1.15), there exists C1 > 0 such that

uε ≤ C1µ
(n
2
−1)(1−2ν)

ε |x|(2−n)(1−ν)

on ∂B0(Rµε). We also have that there exists C2 > 0 such that H ≥ C2|x|2−n around 0, and
that there exists C3 > 0 such that H ≤ C3|x|2−n. Then, since Lεuε = 0 and uε = 0 on ∂B0(δ),
we get that there exists C4 > 0 such that

Lε

(

C4µ
(n
2
−1)(1−2ν)

ε H1−ν − uε

)

≥ 0 in B0(δ)\B0(Rµε) , and

C4µ
(n
2
−1)(1−2ν)

ε H1−ν ≥ uε on ∂ (B0(δ)\B0(Rµε))

By the maximum principle, it follows that

uε ≤ C4µ
(n
2
−1)(1−2ν)

ε H1−ν

in B0(δ)\B0(Rµε), and then that

uε ≤ C5µ
(n
2
−1)(1−2ν)

ε |x|(1−ν)(2−n)

in B0(δ)\B0(Rµε) for some C5 > 0. It is clear that this inequality holds also in B0(Rµε), up to
changing C5. As a consequence, we proved that for ν > 0 small, there exists C6 > 0, such that
for ε > 0 small,

uε ≤ C6µ
(n
2
−1)(1−2ν)

ε |x|(1−ν)(2−n) (12.1.25)

in B0(δ), and thus, also in B. Pushing further the analysis, we let now (yε) be a sequence of
points in B0(

δ0
2
), and let G̃ be the Green function of L = ∆ − α in B0(δ0) with zero Dirichlet

boundary condition, where δ0 > 0 is such that L = ∆ − α is coercive on B0(δ0). Thanks to
(12.1.6), and since rε → 0 as ε → 0,

uε(yε) ≤
1

Kn

∫

B0(δ0)
G̃(yε, x)u

2⋆−1
ε (x)dx (12.1.26)

We set
Φε = uε(yε)µ

1−n
2

ε |yε|n−2

and distinguish three cases.

Case 1: we assume that |yε|
µε

→ R as ε → 0, R ∈ [0,+∞). Then, thanks to (12.1.15), (Φε)
is bounded.

54



Case 2: we assume that yε → y0 as ε → 0, where y0 6= 0, and let δ > 0 be such that
2δ ≤ |y0|. Then,

∫

B0(δ0)
G̃(yε, x)u

2⋆−1
ε (x)dx

≤
∫

B0(δ)
G̃(yε, x)u

2⋆−1
ε (x)dx+

∫

B0(δ0)\B0(δ)
G̃(yε, x)u

2⋆−1
ε (x)dx

≤ C
∫

B0(δ)
u2⋆−1

ε dx+ C
∫

B0(δ0)\B0(δ)

1

|yε − x|n−2
u2⋆−1

ε dx

where C > 0 is independent of ε. By (12.1.25), with (n+ 2)ν < 2,

∫

B0(δ0)\B0(δ)

1

|yε − x|n−2
u2⋆−1

ε dx = o
(

µ
n
2
−1

ε

)

Independently,
∫

B0(δ)
u2⋆−1

ε dx =
∫

B0(µε)
u2⋆−1

ε dx+
∫

B0(δ)\B0(µε)
u2⋆−1

ε dx

By (12.1.11),
∫

B0(µε)
u2⋆−1

ε dx = O
(

µ
n
2
−1

ε

)

while by (12.1.25) where ν > 0 is chosen sufficiently small such that (n+ 2)ν < 2,

∫

B0(δ)\B0(µε)
u2⋆−1

ε dx = O
(

µ
n
2
−1

ε

)

By (12.1.26), this implies that (Φε) is bounded.

Case 3: we assume that |yε|
µε

→ +∞ and that |yε| → 0 as ε → 0. Then, by (12.1.25),

∫

B0(δ0)
G̃(yε, x)u

2⋆−1
ε (x)dx

≤
∫

Byε(
|yε|
2

)
G̃(yε, x)u

2⋆−1
ε (x)dx+

∫

B0(δ0)\Byε (
|yε|
2

)
G̃(yε, x)u

2⋆−1
ε (x)dx

≤ Cµ
n+2

2
(1−2ν)

ε |yε|(ν−1)(n+2)
∫

Byε(
|yε|
2

)

1

|yε − x|n−2
dx

+C
1

|yε|n−2

∫

B0(δ0)
u2⋆−1

ε dx

≤ Cµ
n+2

2
(1−2ν)

ε |yε|(ν−1)(n+2)+2 + C
1

|yε|n−2
µ

n
2
−1

ε

where C > 0 does not depend on ε. Thanks to (12.1.26) we then get that

|yε|n−2µ
1−n

2
ε uε(yε) ≤ C

(

µε

|yε|

)2−(n+2)ν

+ C

and since |yε|
µε

→ +∞ as ε→ 0, we get that (Φε) is bounded.
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Summarizing cases 1 to 3, for any sequence (yε) in B0(
δ0
2
), there exists C > 0 such that

µ
1−n

2
ε |yε|n−2uε(yε) ≤ C

Since the uε’s are radially decreasing, this implies that there exists C > 0 such that for any
x ∈ B and any ε > 0,

µ
1−n

2
ε |x|n−2uε(x) ≤ C (12.1.27)

An equivalent formulation of (12.1.27) is that for any x ∈ B and any ε > 0,

uε(x) ≤ Cµ
1−n

2
ε







1

1 + ω
2/n
n

4µ2
ε
|x|2







n−2
2

(12.1.28)

where C > 0 is independent of x and ε.

Going on with the proof of (12.1.4) and (12.1.5), the goal of the following subsection is to
estimate rε in terms of µε. We start with the case n ≥ 5.

12.1.3 Estimating rε with respect to µε when n ≥ 5

As already mentioned, we want to estimate rε in terms of µε. For that purpose, we define the
function ûε by

ûε(x) = r
n
2
−1

ε uε(rεx) (12.1.29)

It is easily seen that ûε > 0 in B, ûε = 0 on ∂B,

∆ûε − αr2
ε ûε +Bε‖uε‖1r

n
2
+1

ε =
1 − ε

Kn
û2⋆−1

ε (12.1.30)

in B, and
∫

B
û2⋆

ε dx = 1 (12.1.31)

Moreover, if we set µ̂ε = µε/rε, then

µ̂
n
2
−1

ε ûε(µ̂εx) →




1

1 + ω
2/n
n

4
|x|2





n−2
2

(12.1.32)

in C0
loc(IR

n), and, thanks to (12.1.27),

µ̂
1−n

2
ε |x|n−2ûε(x) ≤ C (12.1.33)

for any x ∈ B. By (12.1.32), µ̂ε → 0 as ε → 0. As another remark, since uε is C1 in B, we have
that

∂ν ûε = 0 on ∂B (12.1.34)

Multiplying (12.1.30) by µ̂
1−n

2
ε and integrating we get that

−αr2
ε µ̂

1−n
2

ε

∫

B
ûεdx+Bε‖uε‖1r

n
2
+1

ε µ̂
1−n

2
ε |B| =

1 − ε

Kn
µ̂

1−n
2

ε

∫

B
û2⋆−1

ε dx
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where |B| is the volume of B. Since

µ̂
1−n

2
ε

∫

B
ûε(x)

2⋆−1dx =
∫

B0(
1

µ̂ε
)

(

µ̂
n
2
−1

ε ûε(µ̂εx)
)2⋆−1

dx

we get with (12.1.32) and (12.1.33) that

µ̂
1−n

2
ε

∫

B
ûε(x)

2⋆−1dx→
∫

IR
n





1

1 + ω
2/n
n

4
|x|2





n+2
2

dx

as ε→ 0. Independently, since rε → 0 as ε→ 0, (12.1.33) gives that

r2
ε µ̂

1−n
2

ε

∫

B
ûεdx→ 0

as ε→ 0. Noting that

1

Kn

∫

IR
n





1

1 + ω
2/n
n

4
|x|2





n+2
2

dx = (n− 2)2n−2ω
2
n
−1

n ωn−1

it follows that
Bε‖uε‖1r

n
2
+1

ε µ̂
1−n

2
ε → An (12.1.35)

as ε→ 0, where

An = n(n− 2)2n−2ω
2
n
−1

n (12.1.36)

We have that

∆(µ̂
1−n

2
ε ûε) − αr2

ε µ̂
1−n

2
ε ûε +Bε‖uε‖1r

n
2
+1

ε µ̂
1−n

2
ε =

1 − ε

Kn
µ̂2

ε

(

µ̂
1−n

2
ε ûε

)2⋆−1

and the coefficients in this equation are bounded thanks to (12.1.35). Since the sequence

(µ̂
1−n

2
ε ûε) is bounded in any compact subset of B\{0}, we get by standard elliptic theory that

µ̂
1−n

2
ε ûε → Φ in C1

loc

(

B\{0}
)

(12.1.37)

where Φ is a solution of
∆Φ + An = 0 (12.1.38)

in B\{0}. Clearly, Φ is radially symmetrical and decreasing in B\{0}. Moreover,

Φ = 0 and ∂νΦ = 0 on ∂B

Integrating (12.1.38) on B\B0(r), we then get that

Φ(x) =
An

n(n− 2)

(

1

|x|n−2
− 1

)

+
An

2n

(

|x|2 − 1
)

(12.1.39)
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Now we apply the Pohozaev identity to ûε in B. The Pohozaev identity [33] for ûε in B states
that

∫

∂B
(x, ν) (∂ν ûε)

2dσ + (n− 2)
∫

∂B
ûε(∂ν ûε)dσ

= −2
∫

B
(∇ûε, x)∆ûεdx− (n− 2)

∫

B
ûε∆ûεdx

where ν is the unit outer normal to ∂B. Since ûε = 0 and ∂ν ûε = 0 on ∂B, we get with (12.1.30)
that

αr2
ε

∫

B
û2

εdx =
n+ 2

2
Bε‖uε‖1r

n
2
+1

ε

∫

B
ûεdx

By (12.1.33), (12.1.35), (12.1.37), and (12.1.39), this implies that

1

µ̂n−2
ε

r2
ε

∫

B
û2

εdx→ n+ 2

2α
An

∫

B
Φdx =

A2
n

4nα
ωn−1 (12.1.40)

as ε→ 0. Independently,

1

µ̂2
ε

∫

B
ûε(x)

2dx =
∫

B0( 1
µ̂ε

)

(

µ̂
n
2
−1

ε ûε(µ̂εx)
)2

dx

and by (12.1.32) and (12.1.33) we get that when n ≥ 5,

∫

B
ûε(x)

2dx =





∫

IR
n

(

1 +
ω2/n

n

4
|x|2

)2−n

dx



 µ̂2
ε + o

(

µ̂2
ε

)

It is easily seen, see for instance Demengel and Hebey [11], that

∫

IR
n

(

1 +
ω2/n

n

4
|x|2

)2−n

dx = 2n−1ωn−1

ωn

Γ(n
2
)Γ(n

2
− 2)

Γ(n− 2)

where Γ is the Euler function. Since

Γ(n) = 2n−1ωn−1

ωn
Γ(
n

2
)2

we get that when n ≥ 5,
∫

B
ûε(x)

2dx =
4(n− 1)

n− 4
µ̂2

ε + o
(

µ̂2
ε

)

(12.1.41)

Combining (12.1.40) and (12.1.41), it follows that

lim
ε→0

r2
ε

µ̂n−4
ε

=
(n− 4)ωn−1A

2
n

16n(n− 1)α
(12.1.42)

when n ≥ 5, where An is given by (12.1.36).

The goal of the following subsection is to estimate rε in terms of µε in the limit case n = 4.
For that purpose, a stronger estimate than (12.1.28) is needed.
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12.1.4 Estimating rε with respect to µε when n = 4

We claim that when n = 4,

lim
ε→0

| ln µ̂ε|r2
ε =

4

α
(12.1.43)

In order to prove this claim, we let (yε) be a sequence of points in B such that yε → 0 and
|yε|
µ̂ε

→ +∞ as ε→ 0. We let also v̂ε be the function given by

v̂ε(x) = |yε|
n
2
−1ûε(|yε|x)

Then,

∆v̂ε − αr2
ε |yε|2v̂ε +Bε‖uε‖1r

n
2
+1

ε |yε|
n
2
+1 =

1 − ε

Kn

v̂2⋆−1
ε

in B0(
1

|yε|), and if

ŵε =

(

µ̂ε

|yε|

)1−n
2

v̂ε

we get that

∆ŵε − αr2
ε |yε|2ŵε +Bε‖uε‖1

(

µ̂ε

|yε|

)1−n
2

r
n
2
+1

ε |yε|
n
2
+1

=
1 − ε

Kn

(

µ̂ε

|yε|

)2

ŵ2⋆−1
ε

(12.1.44)

By (12.1.32) and (12.1.33),

(

µ̂ε

|yε|

)n−2

ŵε

(

µ̂ε

|yε|
x

)

→




1

1 + ω
2/n
n

4
|x|2





n−2
2

(12.1.45)

in C0
loc(IR

n), and
|x|n−2ŵε(x) ≤ C (12.1.46)

Integrating (12.1.44) over B0(
1

|yε|), we get that

Bε‖uε‖1

(

µ̂ε

|yε|

)1−n
2

r
n
2
+1

ε |yε|
n
2
+1 ωn−1

n|yε|n

= αr2
ε |yε|2

∫

B0( 1
|yε|

)
ŵε(x)dx+

1 − ε

Kn

(

µ̂ε

|yε|

)2
∫

B0( 1
|yε|

)
ŵε(x)

2⋆−1dx

(12.1.47)

By (12.1.46),

|yε|2
∫

B0( 1
|yε|

)
ŵε(x)dx = |yε|2−n

∫

B
ŵε

(

x

|yε|

)

dx ≤ C
∫

B

1

|x|n−2
dx = C ′

Independently,

(

µ̂ε

|yε|

)2
∫

B0( 1
|yε|

)
ŵε(x)

2⋆−1dx =
∫

B0( 1
µ̂ε

)





(

µ̂ε

|yε|

)n−2

ŵε

(
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|yε|
x

)





2⋆−1
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59



and thanks to (12.1.45) and (12.1.46), it follows that

(

µ̂ε

|yε|

)2
∫

B0( 1
|yε|

)
ŵε(x)

2⋆−1dx→
∫

IR
n





1

1 + ω
2/n
n

4
|x|2





n+2
2

dx

as ε→ 0. Coming back to (12.1.47), and since |yε| → 0 as ε → 0, we get that

Bε‖uε‖1

(

µ̂ε

|yε|

)1−n
2

r
n
2
+1

ε |yε|
n
2
+1 → 0 (12.1.48)

as ε → 0. Noting that the sequence (ŵε) is bounded in any compact subset of IRn\{0}, it
follows from standard elliptic theory, (12.1.44), and (12.1.48), that ŵε → Ψ in C1

loc(IR
n\{0}),

where Ψ is a solution of ∆Ψ = 0 in IRn\{0}. We let δ > 0 small, and we integrate (12.1.44)
over B0(δ). Then,

−
∫

∂B0(δ)
∂νŵεdσ − αr2

ε |yε|2
∫

B0(δ)
ŵεdx

+Bε‖uε‖1

(

µ̂ε

|yε|

)1−n
2

r
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2
+1

ε |yε|
n
2
+1 |B0(δ)|

=
1 − ε

Kn

(

µ̂ε

|yε|

)2
∫
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ŵ2⋆−1

ε dx

(12.1.47)

With the same arguments as above, it is easily seen that

r2
ε |yε|2

∫

B0(δ)
ŵεdx→ 0

and that
(

µ̂ε

|yε|

)2
∫

B0(δ)
ŵ2⋆−1

ε dx→
∫

IR
n





1

1 + ω
2/n
n

4
|x|2





n+2
2

dx

as ε→ 0. Since ŵε → Ψ in C1
loc(IR

n), we also have that
∫

∂B0(δ)
∂νŵεdσ →

∫

∂B0(δ)
∂νΨdσ

Passing to the limit as ε→ 0 in (12.1.49), it follows that

∫

∂B0(δ)
∂νΨdσ +

1

Kn

∫
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


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2/n
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4
|x|2


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dx = 0

and thus that ∫

∂B0(δ)
∂νΨdσ +

ωn−1

n
An = 0 (12.1.50)

where An is as in (12.1.36). In particular, Ψ 6≡ 0. Independently, we have that Ψ ≥ 0, and,
thanks to (12.1.46), there exists C > 0 such that

|x|n−2Ψ(x) ≤ C (12.1.51)
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for all x ∈ IRn\{0}. Then the Kelvin transform Ψ̃ of Ψ given by

Ψ̃(x) =
1

|x|n−2
Ψ

(

x

|x|2
)

is bounded and harmonic in IRn\{0}. In particular, Ψ̃(x) = o(|x|2−n) as |x| → 0. Thus, see for
instance the excellent Han-Lin [23], 0 is a removable singularity for Ψ̃, and Liouville’s theorem
implies that Ψ̃ is constant. Hence, there exists λ > 0 such that Ψ(x) = λ/|x|n−2 and, thanks
to (12.1.50) we get that

Ψ(x) =
An

n(n− 2)|x|n−2

where An is as in (12.1.36). In particular, taking x = yε/|yε|, we get that for any sequence (yε)

in B such that yε → 0 and |yε|
µ̂ε

→ +∞ as ε→ 0,

|yε|n−2µ̂
1−n

2
ε ûε(yε) →
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n(n− 2)
= 2n−2ω

2
n
−1

n (12.1.52)

as ε→ 0. Combining (12.1.32), (12.1.37), (12.1.39), and (12.1.52), it follows that for any δ > 0
and any x ∈ B0(δ),
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(12.1.53)

for ε > 0 small, where C(δ) > 1 is such that C(δ) → 1 as δ → 0. When n = 4, and for δ > 0
small, we get with (12.1.33) that

∫

B\B0(δ)
û2

εdx = O(µ̂2
ε)

Thus,
∫
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û2

εdx =
∫
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û2

εdx+O(µ̂2
ε) (12.1.54)

Independently,
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ε| ln µ̂ε|

)

Then, coming back to (12.1.54), and thanks to (12.1.53), we get that

∫
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û2

εdx =
16ω3

ω4
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ε| ln µ̂ε| + o
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µ̂2
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)

(12.1.55)

Combining (12.1.40) and (12.1.55), this proves (12.1.43).

61



With independent arguments we also have that
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2
ε ‖uε‖1 = µ̂
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ε

∫
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uεdx = µ̂
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∫
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ûεdx

and (12.1.33), (12.1.37), and (12.1.39) imply that
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2
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Φdx =
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as ε→ 0. By (12.1.35), we then get that

Bεr
n+2
ε → 2n(n+ 2)

ωn−1

(12.1.56)

as ε→ 0. As already mentioned, we want to describe the behavior of Bε in terms of ε as ε → 0.
Thanks to (12.1.42), (12.1.43), and (12.1.56), the question reduces to describing the behavior
of µ̂ε in terms of ε as ε → 0. This is the subject of the two following subsections.

12.1.5 Estimating µ̂ε in terms of ε (Part 1)

We want to describe the behavior of µ̂ε in terms of ε as ε→ 0. For that purpose, we let

ûε = (1 + θε)Uε + µ̂
n
2
−1

ε (Gε + wε) (12.1.57)

where

Uε = µ̄
n
2
−1

ε

(

µ̄2
ε +

ω2/n
n

4
(1 − ε)|x|2

)1−n
2

,

Gε = αε(|x|2 − βε) ,

αε =
1

2n
Bε‖uε‖1r

n
2
+1

ε µ̂
1−n

2
ε ,

(12.1.58)

θε, βε are real numbers, µ̄ε is a positive real number and wε is a function. We choose θε and µ̄ε

such that
∫

B
(∇Uε,∇wε) dx = 0 ,

∫

B
(∇ (x,∇Uε) ,∇wε) dx = 0

(12.1.59)

Let

Uµ = µ
n
2
−1

(

µ2 +
ω2/n

n

4
(1 − ε)|x|2

)1−n
2

To get (12.1.59), it suffices to choose θε and µ̄ε such that they minimize

J (θ, µ) =
∫

B

∣

∣

∣

∣

∇ (ûε − (1 + θ)Uµ) − 2µ̂
n
2
−1

ε αεx
∣

∣

∣

∣

2

dx

among the θ’s in
[

−1
2
, 1

2

]

and the µ’s in
[

µ̂ε

2
, 2µ̂ε

]

and to prove that θε and µ̄ε lie in the interior
of the interval of constraints for ε small enough. We prove indeed that

θε → 0 (12.1.60)
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as ε→ 0 and that
µ̂ε

µ̄ε

→ 1 (12.1.61)

as ε→ 0. By (1.11), it is clear that J (0, µ̂ε) → 0 as ε→ 0 so that J (θε, µ̄ε) → 0 as ε→ 0. By
(1.11) again, one gets that this enforces the following to happen:

lim
ε→0

∫

B
|∇
(

(1 + θε)Uε + µ̂
n
2
−1

ε Gε

)

|2dx =
1

K2
n

and

lim
ε→0

∫

B

(

∇
(

(1 + θε)Uε + µ̂
n
2
−1

ε Gε

)

,∇ûε

)

dx =
1

K2
n

where Uε and Gε are as in (1.58). Using (1.11) once again, this is not difficult to check, noting
that αε = O (1) thanks to (1.35), that these last two relations lead to (1.60) and (1.61). We
also choose βε such that wε = 0 on ∂B. Hence,

αε(1 − βε) + (1 + θε)

(

µ̂2
ε +

(1 − ε)ω2/n
n

4

)1−n
2

= 0

By (12.1.35) and (12.1.61), we have that

αε →
An

2n

βε →
n

n− 2

(12.1.62)

as ε→ 0. Thanks to (12.1.33), (12.1.37), and (12.1.39),

∫

B
wεdx→ 0 (12.1.63)

as ε→ 0. Let Wε be such that

Wε(x) = V0

(

(1 − ε)1/2x
)

where V0 is as above. Then,

∆Wε =
1 − ε

Kn
W 2⋆−1

ε

and
∫

B
|∇Uε|2dx =

∫

B0(
1

µ̂ε
)
|∇Wε|2dx

∫

IR
n
|∇Wε|2dx = (1 − ε)1−n

2K−1
n

As an easy consequence, writing that

∫

B0( 1
µ̂ε

)
|∇Wε|2dx =

∫

IR
n
|∇Wε|2dx−

∫

IR
n\B0( 1

µ̂ε
)
|∇Wε|2dx
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we get, thanks to (12.1.61), that

∫

B
|∇Uε|2dx =

1

Kn

+
n− 2

2Kn

ε− A2
nωn−1

n2(n− 2)
µ̂n−2

ε + o(µ̂n−2
ε ) + o(ε) (12.1.64)

Independent computations give that

∫

B
|∇Gε|2dx =

A2
nωn−1

n2(n+ 2)
+ o(1) (12.1.65)

and ∫

B
(∇Gε,∇wε) dx =

∫

B
(∆Gε)wεdx = o(1) (12.1.66)

thanks to (12.1.63). Similarly, it is easily seen that

∫

B
(∇Gε,∇Uε) dx = −A

2
nωn−1

2n2
µ̂

n
2
−1

ε + o(µ̂
n
2
−1

ε ) (12.1.67)

By (12.1.59), (12.1.61), and (12.1.64)-(12.1.67), we then get that

∫

B
|∇ûε|2dx =

1

Kn

+
2θε

Kn

+
(n− 2)ε

2Kn

− A2
nωn−1µ̂

n−2
ε

n2 − 4

+µ̂n−2
ε

∫

B
|∇wε|2dx+ o(θε) + o(ε) + o(µ̂n−2

ε )

(12.1.68)

Now we claim that
ε = O(µ̂n−2

ε ) (12.1.69)

Applying the sharp Sobolev inequality to ûε, we get thanks to (12.1.30) and (12.1.31) that

ε

Kn

≤ αr2
ε

∫

B
û2

εdx−Bε‖uε‖1r
n
2
+1

ε

∫

B
ûεdx (12.1.70)

By (12.1.40),

αr2
ε

∫

B
û2

εdx =
ωn−1

4n
A2

nµ̂
n−2
ε + o(µ̂n−2

ε ) (12.1.71)

while (12.1.33), (12.1.35), (12.1.37), and (12.1.39) imply that

Bε‖uε‖1r
n
2
+1

ε

∫

B
ûεdx =

ωn−1

2n(n+ 2)
A2

nµ̂
n−2
ε + o(µ̂n−2

ε ) (12.1.72)

Combining (12.1.70)-(12.1.72), this proves (12.1.69).

Let us now multiply (12.1.30) by ûε and integrate over B. Thanks to (12.1.68)-(12.1.72),
we get that

nε

2Kn
+

2θε

Kn
+ µ̂n−2

ε

∫

B
|∇wε|2dx+ o(θε) =

ωn−1A
2
n

4(n− 2)
µ̂n−2

ε + o(µ̂n−2
ε ) (12.1.73)

In particular,
∫

B
|∇wε|2dx = o

(

θεµ̂
2−n
ε

)

+O(1)
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and, thanks to the Sobolev inequality,

(∫

B
|wε|2

⋆

dx
) 2

2⋆

= o
(

θεµ̂
2−n
ε

)

+O(1) (12.1.74)

For 1 ≤ p ≤ 3 and X, Y such that X ≥ 0 and X + Y ≥ 0,

(X + Y )p = Xp + pXp−1Y +
p(p− 1)

2
Xp−2Y 2 +O(|Y |p)

while for 3 ≤ p ≤ 4 and X, Y as above,

(X + Y )p = Xp + pXp−1Y +
p(p− 1)

2
Xp−2Y 2 +O(Xp−3|Y |3) +O(|Y |p)

Writing that
∫

B û
2⋆

ε dx = 1, we then get that

1 = (1 + θε)
2⋆
∫

B
U2⋆

ε dx+ 2⋆(1 + θε)
2⋆−1µ̂

n
2
−1

ε

∫

B
U2⋆−1

ε (Gε + wε)dx

+
2⋆(2⋆ − 1)

2
µ̂n−2

ε (1 + θε)
2⋆−2

∫

B
U2⋆−2

ε (Gε + wε)
2dx

+O
(

µ̂n
ε

∫

B
|Gε + wε|2

⋆

dx
)

(12.1.75)

if n ≥ 6, and

1 = (1 + θε)
2⋆
∫

B
U2⋆

ε dx+ 2⋆(1 + θε)
2⋆−1µ̂

n
2
−1

ε

∫

B
U2⋆−1

ε (Gε + wε)dx

+
2⋆(2⋆ − 1)

2
µ̂n−2

ε (1 + θε)
2⋆−2

∫

B
U2⋆−2

ε (Gε + wε)
2dx

+O

(

µ̂
3n
2
−3

ε

(∫

B
|Gε + wε|2

⋆

dx
)3/2⋆

)

+O
(

µ̂n
ε

∫

B
|Gε + wε|2

⋆

dx
)

(12.1.76)

if n = 4, 5. For Wε as above,

∫

B
U2⋆

ε dx =
∫

B0( 1
µ̂ε

)
W 2⋆

ε dx and
∫

IR
n
W 2⋆

ε dx =
1

(1 − ε)n/2

Thanks to (12.1.61) and (12.1.69) we then get that

1 − (1 + θε)
2⋆
∫

B
U2⋆

ε dx = −2⋆θε −
n

2
ε+ o(θε) + o(µ̂n−2

ε ) (12.1.77)

By (12.1.74) we easily get that

µ̂n
ε

∫

B
|Gε + wε|2

⋆

dx = o(µ̂n−2
ε ) + o(θε) (12.1.78)

and

µ̂
3n
2
−3

ε

(∫

B
|Gε + wε|2

⋆

dx
)3/2⋆

= o(µ̂n−2
ε ) + o(θε) (12.1.79)
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Independently, it is easily checked that µ̂
1−n

2
ε Wε(

1
µ̂ε
x) = Uε(x). Hence

∆Uε =
1 − ε

Kn

U2⋆−1
ε

and, thanks to (12.1.59), we get that

∫

B
U2⋆−1

ε (Gε + wε)dx =
∫

B
U2⋆−1

ε Gεdx

Then,
∫

B
U2⋆−1

ε (Gε + wε)dx = µ̂
n
2
−1

ε

∫

B0(
1

µ̂ε
)
Wε(x)

2⋆−1Gε(µ̂εx)dx

and we find, thanks to (12.1.61), that

∫

B
U2⋆−1

ε (Gε + wε)dx = −A
2
nKnωn−1

2n(n− 2)
µ̂

n
2
−1

ε + o(µ̂
n
2
−1

ε ) (12.1.80)

Independently, it is easily seen with (12.1.74) that

∫

B
U2⋆−2

ε (Gε + wε)
2dx =

∫

B
U2⋆−2

ε w2
εdx+ o(1) + o(θεµ̂

2−n
ε ) (12.1.81)

Coming back to (12.1.75) and (12.1.76), we get with (12.1.77)-(12.1.81) that

µ̂n−2
ε

∫

B
U2⋆−2

ε w2
εdx = −2(n− 2)

n + 2
θε −

(n− 2)2

2(n+ 2)
ε

+
A2

nKnωn−1

n(n+ 2)
µ̂n−2

ε + o(θε) + o(µ̂n−2
ε )

(12.1.82)

On such an assertion, note that

∫

B
U2⋆−2

ε w2
εdx = O

(

(∫

B
w2⋆

ε dx
)2/2⋆)

Independently, it is easily seen from (12.1.30) that

∆wε =
1 − ε

Kn

(

û2⋆−1
ε − (1 + θε)U

2⋆−1
ε

)

µ̂
1−n

2
ε + αr2

ε µ̂
1−n

2
ε ûε

in B. By (12.1.59) we then get that

∫

B
|∇wε|2dx =

1 − ε

Kn

µ̂
1−n

2
ε

∫

B
û2⋆−1

ε wεdx+ αr2
ε µ̂

1−n
2

ε

∫

B
ûεwεdx (12.1.83)

Now we want to estimate the terms in the right hand side of (12.1.83). By (12.1.37) and
(12.1.39), |x|n−2wε(x) → 0 in C0

loc(B\{0}) as ε → 0. Independently, it follows from (12.1.53)
that for |x| ≤ δ and ε small, |x|n−2wε(x) ≤ ε(δ) where ε(δ) → 0 as δ → 0. Hence,

|x|n−2wε(x) → 0 in C0(B) (12.1.84)
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as ε→ 0. We now write that
∫

B

ûε

|x|n−2
dx =

∫

B0( 1
µ̂ε

)

ûε

|x|n−2
dx+

∫

B\B0( 1
µ̂ε

)

ûε

|x|n−2
dx

Thanks to (12.1.42) and (12.1.43), it follows from (12.1.32) that

r2
ε µ̂

1−n
2

ε

∫

B0( 1
µ̂ε

)

ûε

|x|n−2
dx = O(1)

and from (12.1.33) that

r2
ε µ̂

1−n
2

ε

∫

B\B0( 1
µ̂ε

)

ûε

|x|n−2
dx = O(1)

Then, (12.1.84) implies that

r2
ε µ̂

1−n
2

ε

∫

B
ûεwεdx = o(1) (12.1.85)

For X, Y such that X ≥ 0 and X + Y ≥ 0 we write now that

(X + Y )2⋆−1 = X2⋆−1 + (2⋆ − 1)X2⋆−2Y + f(n)O(X2⋆−3Y 2) +O(|Y |2⋆−1)

where f(n) = 1 if n = 4, 5, and f(n) = 0 if n ≥ 6. Then,

µ̂
1−n

2
ε

∫

B
û2⋆−1

ε wεdx = (1 + θε)
2⋆−1µ̂

1−n
2

ε

∫

B
U2⋆−1

ε wεdx

+(2⋆ − 1)(1 + θε)
2⋆−2

∫

B
U2⋆−2

ε (Gε + wε)wεdx

+µ̂
n
2
−1

ε O
(∫

B
U2⋆−3

ε (Gε + wε)
2|wε|dx

)

f(n)

+µ̂2
εO

(∫

B
|Gε + wε|2

⋆−1|wε|dx
)

(12.1.86)

As when proving (12.1.81), it follows from (12.1.74) that
∫

B
U2⋆−2

ε (Gε + wε)wεdx =
∫

B
U2⋆−2

ε w2
εdx+ o(1) + o(θεµ̂

2−n
ε ) (12.1.87)

Still thanks to (12.1.74), we easily get that
∫

B
|Gε + wε|2

⋆−1|wε|dx = O(1) +O(θεµ̂
2−n
ε ) (12.1.88)

and ∫

B
U2⋆−3

ε (Gε + wε)
2|wε|dx = O(1) +O(θεµ̂

2−n
ε ) (12.1.89)

when n = 4, 5. We have already seen that
∫

B
U2⋆−1

ε wεdx = 0 (12.1.90)

Combining (12.1.86)-(12.1.90), it follows that

µ̂
1−n

2
ε

∫

B
û2⋆−1

ε wεdx =
n+ 2

n− 2

∫

B
U2⋆−2

ε w2
εdx+ o(1) + o(θεµ̂

2−n
ε ) (12.1.91)
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Coming back to (12.1.83), we get with (12.1.85) and (12.1.91) that

∫

B
|∇wε|2dx =

n + 2

(n− 2)Kn

∫

B
U2⋆−2

ε w2
εdx+ o(1) + o(θεµ̂

2−n
ε ) (12.1.92)

Then, combining (12.1.82) with (12.1.92),

µ̂n−2
ε

∫

B
|∇wε|2dx = − 2

Kn

θε −
n− 2

2Kn

ε

+
A2

nωn−1

n(n− 2)
µ̂n−2

ε + o(θε) + o(µ̂n−2
ε )

(12.1.93)

and coming back to (12.1.73), we get that

ε =
(n− 4)ωn−1

4n(n− 2)
A2

nKnµ̂
n−2
ε + o(θε) + o(µ̂n−2

ε ) (12.1.94)

where An is given by (12.1.36).

As already mentioned, we want to express µ̂ε in terms of ε as ε → 0. Thanks to (12.1.94),
if we prove that θε = O(µ̂n−2

ε ), then we get a description of µ̂ε in terms of ε as ε → 0. The
following section is devoted to this estimation of θε in terms of µ̂ε.

12.1.6 Estimating µ̂ε in terms of ε (Part 2)

After (12.1.94), we claim that
θε = O(µ̂n−2

ε ) (12.1.95)

We prove (12.1.95) by contradiction. We assume that

|θε|µ̂2−n
ε → +∞ (12.1.96)

as ε→ 0. Then, by (12.1.69), (12.1.73) and (12.1.82),

lim
ε→0

∫

B |∇wε|2dx
∫

B U
2⋆−2
ε w2

εdx
=

2⋆ − 1

Kn

(12.1.97)

We contradict (12.1.97). For that purpose we consider the eigenvalue problem

∆ϕi,ε = µi,εU
2⋆−2
ε ϕi,ε in B

ϕi,ε = 0 on ∂B
(12.1.98)

where ∫

B
U2⋆−2

ε ϕi,εϕj,εdx = δij

and µ1,ε ≤ . . . ≤ µi,ε ≤ . . .. Let V0 be as above, given by

V0(x) =

(

1 +
ω2/n

n

4
|x|2

)1−n
2
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We claim that for any i ≥ 1,
µi,ε → µi (12.1.99)

as ε→ 0, µ1 ≤ . . . ≤ µi ≤ . . ., and that
∫

B
U2⋆−2

ε (ϕi,ε − ψi,ε)
2 dx→ 0 (12.1.100)

as ε→ 0 for functions ψi,ε satisfying that

µ̂
n
2
−1

ε ψi,ε(µ̂εx) → ψi(x)

in C0
loc(IR

n) ∩ L2⋆
(IRn) as ε → 0, where the ψi’s are such that

∆ψi = µiV
2⋆−2
0 ψi in IRn

∫

IR
n
V 2⋆−2

0 ψ2
i dx < +∞

(12.1.101)

We prove (12.1.99) and (12.1.100) by induction. When i = 1,

µ1,ε = inf
{ϕ∈C∞

c (B),ϕ 6≡0}

∫

B |∇ϕ|2dx
∫

B U
2⋆−2
ε ϕ2dx

On the one hand, taking ϕ = Uε − Uε(1), we get that

lim sup
ε→0

µ1,ε ≤
1

Kn

On the other hand, thanks to the sharp Sobolev inequality,

(∫

B
|ϕ1,ε|2

⋆

dx
)

2
2⋆

≤ Kn

∫

B
|∇ϕ1,ε|2dx

= Knµ1,ε

∫

B
U2⋆−2

ε ϕ2
1,εdx

≤ Knµ1,ε

(∫

B
U2⋆

ε dx
)1− 2

2⋆
(∫

B
|ϕ1,ε|2

⋆

dx
) 2

2⋆

and we get that

lim inf
ε→0

µ1,ε ≥
1

Kn

Hence,

µ1,ε → µ1 =
1

Kn
(12.1.102)

as ε→ 0, and we also have that
∫

B
|ϕ1,ε|2

⋆

dx→ 1 and
∫

B
|∇ϕ1,ε|2dx→ 1

Kn

as ε→ 0, since
∫

B U
2⋆−2
ε ϕ2

1,εdx = 1. We let Wε be as above, given by

Wε(x) =

(

1 +
ω2/n

n

4
(1 − ε)|x|2

)1−n
2
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and let ϕ̂1,ε be given by

ϕ̂1,ε(x) = µ̂
n
2
−1

ε ϕ1,ε(µ̂εx) in B0(
1

µ̂ε
)

ϕ̂1,ε(x) = 0 in IRn\B0(
1

µ̂ε
)

It is easily seen that
∫

IR
n
W 2⋆−2

ε ϕ̂2
1,εdx =

∫

B
U2⋆−2

ε ϕ2
1,εdx = 1

and that the ϕ̂1,ε’s are bounded in D2
1(IR

n). We may therefore assume that the ϕ̂1,ε’s converge
weakly to some ψ1 in D2

1(IR
n) as ε→ 0. In particular, it is easily seen that

∫

IR
n
ψ2⋆

1 dx ≤ 1 (12.1.103)

For R > 0, we write that

1 =
∫

IR
n
W 2⋆−2

ε ϕ̂2
1,εdx =

∫

IR
n
(W 2⋆−2

ε − V 2⋆−2
0 )ϕ̂2

1,εdx

+
∫

B0(R)
V 2⋆−2

0 ϕ̂2
1,εdx+

∫

IR
n\B0(R)

V 2⋆−2
0 ϕ̂2

1,εdx

By Hölder’s inequality,

∫

IR
n
(W 2⋆−2

ε − V 2⋆−2
0 )ϕ̂2

1,εdx ≤ C
(∫

IR
n

∣

∣

∣W 2⋆−2
ε − V 2⋆−2

0

∣

∣

∣

2⋆/(2⋆−2)
dx
)1− 2

2⋆

and
∫

IR
n\B0(R)

V 2⋆−2
0 ϕ̂2

1,εdx ≤ C

(

∫

IR
n\B0(R)

V 2⋆

0 dx

)(2⋆−2)/2⋆

Hence,

lim sup
ε→0

∫

IR
n
(W 2⋆−2

ε − V 2⋆−2
0 )ϕ̂2

1,εdx = 0

lim
R→+∞

lim sup
ε→0

∫

IR
n\B0(R)

V 2⋆−2
0 ϕ̂2

1,εdx = 0

and we get that
∫

IR
n
V 2⋆−2

0 ψ2
1dx = lim

R→+∞

∫

B0(R)
V 2⋆−2

0 ψ2
1dx = 1

By Hölder’s inequality,

∫

IR
n
V 2⋆−2

0 ψ2
1dx ≤

(∫

IR
n
V 2⋆

0 dx
)(2⋆−2)/2⋆ (∫

IR
n
ψ2⋆

1 dx
)2/2⋆

(12.1.104)

and since V0 is of norm 1 in L2⋆
(IRn), we get from (12.1.103) and (12.1.104) that ψ1 is of norm

1 in L2⋆
(IRn) and that ψ1 = V0. Then ψ1 is a solution of (12.1.101). Writing that

∫

IR
n
|∇(ϕ̂1,ε − ψ1)|2dx =

∫

IR
n
|∇ϕ̂1,ε|2dx+

∫

IR
n
|∇ψ1|2dx−

2

Kn

∫

IR
n
ϕ̂1,εψ

2⋆−1
1 dx
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we also get that the ϕ̂1,ε’s converge strongly to ψ1 in D2
1(IR

n), and in particular that the ϕ̂1,ε’s
converge strongly to ψ1 in L2⋆

(IRn). Then, (12.1.100) is proved and we get the result for i = 1.
Let us now assume that (12.1.99)-(12.1.101) hold for i = 1, . . . , p. We have

µp+1,ε = inf
ϕ∈H

∫

B
|∇ϕ|2dx

where H is the set of the functions ϕ ∈ C∞
c (B) which are such that

∫

B
U2⋆−2

ε ϕ2dx = 1 and
∫

B
U2⋆−2

ε ϕi,εϕdx = 0

for all i = 1, . . . , p. We claim first that the µp+1,ε’s are bounded. It is easily seen that the
ϕ̂i,ε’s, i = 1, . . . , p, are bounded in D2

1(IR
n). Then, it follows from (12.1.100) that the ϕ̂i,ε’s,

i = 1, . . . , p, converge to ψi weakly in D2
1(IR

n). We let f ∈ C∞
c (IRn) be such that

∫

IR
n
V 2⋆−2

0 fψidx = 0

for all i = 1, . . . , p. We set

fε(x) = µ̂
1−n

2
ε f(

1

µ̂ε
x)

and

f̃ε = fε −
p
∑

i=1

(
∫

B
U2⋆−2

ε fεϕi,εdx
)

ϕi,ε

For ε > 0 sufficiently small, f̃ε ∈ C∞
c (B), and since

∫

B U
2⋆−2
ε ϕi,εϕj,εdx = δij , we have that

∫

B
U2⋆−2

ε f̃εϕi,εdx = 0 (12.1.105)

for all i = 1, . . . , p. It is easily checked that

∫

B
U2⋆−2

ε f̃ 2
ε dx =

∫

B
U2⋆−2

ε f 2
ε dx−

p
∑

i=1

(∫

B
U2⋆−2

ε fεϕi,εdx
)2

∫

B
|∇f̃ε|2dx =

∫

B
|∇fε|2dx−

p
∑

i=1

(∫

B
U2⋆−2

ε fεϕi,εdx
)2

µi,ε

(12.1.106)

for all ε > 0, and that
∫

B
U2⋆−2

ε f 2
ε dx =

∫

IR
n
W 2⋆−2

ε f 2dx→
∫

IR
n
V 2⋆−2

0 f 2dx
∫

B
U2⋆−2

ε fεϕi,εdx =
∫

IR
n
W 2⋆−2

ε fϕ̂i,εdx→
∫

IR
n
V 2⋆−2

0 fψidx = 0
(12.1.107)

as ε→ 0. Since,
∫

B
|∇fε|2dx =

∫

IR
n
|∇f |2dx (12.1.108)

for all ε > 0, we get by combining (12.1.105)-(12.1.108) that for C > 1 and ε > 0 small,

µp+1,ε ≤ C

∫

IR
n |∇f |2dx

∫

IR
n V 2⋆−2

0 f 2dx
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In particular, the µp+1,ε’s are bounded, and this proves the above claim. We may then assume
that µp+1,ε → µp+1 as ε→ 0, where µp+1 ≥ µp. As above, the ϕ̂p+1,ε’s are bounded in D2

1(IR
n).

We may therefore assume that the ϕ̂p+1,ε’s converge weakly to some ψp+1 in D2
1(IR

n). The
ϕ̂p+1,ε’s are solutions of

∆ϕ̂p+1,ε = µp+1,εW
2⋆−2
ε ϕ̂p+1,ε

in B0(
1
µ̂ε

). It is then clear that ψp+1 is a solution of (12.1.101). Now we write that

∫

IR
n
W 2⋆−2

ε (ϕ̂p+1,ε − ψp+1)
2dx =

∫

B0(R)
W 2⋆−2

ε (ϕ̂p+1,ε − ψp+1)
2dx+ oR,ε(1)

where
lim

R→+∞
lim
ε→0

oR,ε(1) = 0

We may assume that the ϕ̂p+1,ε’s converge to ψp+1 in L2
loc(IR

n). Hence

∫

IR
n
W 2⋆−2

ε (ϕ̂p+1,ε − ψp+1)
2dx→ 0

as ε→ 0, and this clearly proves that (12.1.100) holds. By induction, it follows that (12.1.99)-
(12.1.101) hold for all i. Now, as shown by Bianchi-Egnell [4] and Rey [34], the eigenvalue
problem

∆ψ = νV 2⋆−2
0 ψ in IRn

∫

IR
n
V 2⋆−2

0 ψ2dx < +∞
(12.1.109)

has a discrete spectrum ν1 ≤ . . . ≤ νi ≤ . . . such that

ν1 =
1

Kn
, ν2 = . . . = νn+2 =

2⋆ − 1

Kn
, νn+3 >

2⋆ − 1

Kn

and the eigenspaces corresponding to the eigenvalues 1
Kn

and 2⋆−1
Kn

are

E1 = Span{V0} and E2 = Span{Φj , j = 0, . . . , n}

where

Φ0 =

(

1 +
ω2/n

n

4
|x|2

)−n
2
(

1 − ω2/n
n

4
|x|2

)

and Φj =

(

1 +
ω2/n

n

4
|x|2

)−n
2

xj

for j = 1, . . . , n. Coming back to our problem, we let k0 be such that µk0+1 >
2⋆−1
Kn

, and write
that

wε =
k0
∑

i=1

αi,εϕi,ε +Rε (12.1.110)

where wε is given by (12.1.58), and

αi,ε =

∫

B (∇wε,∇ϕi,ε) dx
∫

B |∇ϕi,ε|2dx
=

1

µi,ε

∫

B
(∇wε,∇ϕi,ε) dx
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We write that
(∫

B
(∇wε,∇ϕi,ε) dx

)2

≤ 2
(∫

B
(∇wε,∇ψi,ε) dx

)2

+2
(∫

B
(∇wε,∇(ϕi,ε − ψi,ε)) dx

)2

where ψ1,ε = Uε and ψi,ε(x) = µ̄
1−n

2
ε ψi(

√
1−ε
µ̄ε

x) for 2 ≤ i ≤ k0, so that the ψi,ε’s when 2 ≤ i ≤ k0

are linear combinations of the functions Φ̂j given by

Φ̂j(x) = µ̄
1−n

2
ε Φj(

√
1 − ε

µ̄ε
x)

By (12.1.59), and since the wε’s are radially symmetrical,

∫

B
(∇wε,∇ψi,ε) dx = 0

for 1 ≤ i ≤ k0. Hence,

α2
i,ε ≤

2

µ2
i,ε

∫

B
|∇wε|2dx

∫

B
|∇(ϕi,ε − ψi,ε)|2dx (12.1.111)

When i = 1, we have seen that the ϕ̂1,ε’s converge strongly to V0 in D2
1(IR

n) as ε→ 0. Hence,

∫

B
|∇(ϕ1,ε − ψ1,ε)|2dx→ 0 (12.1.112)

as ε→ 0. We claim now that for 2 ≤ i ≤ k0,
∫

B
|∇(ϕi,ε − ψi,ε)|2dx→ 0 (12.1.113)

It is easily seen that
∫

B
|∇(ϕi,ε − ψi,ε)|2dx =

∫

B0( 1
µ̄ε

)
|∇(ϕ̂i,ε − ψi)|2dx

= µi,ε +
∫

B0( 1
µ̄ε

)
|∇ψi|2dx− 2

∫

B0( 1
µ̄ε

)
(∇ϕ̂i,ε,∇ψi) dx

(12.1.114)

Similarly,
∫

B0( 1
µ̄ε

)
W 2⋆−2

ε ψ2
i dx =

∫

B0( 1
µ̄ε

)
V 2⋆−2

0 ψ2
i dx+ o(1) (12.1.115)

and ∫

B0(
1

µ̄ε
)
W 2⋆−2

ε ϕ̂i,εψidx =
∫

B0( 1
µ̄ε

)
V 2⋆−2

0 ϕ̂i,εψidx+ o(1) (12.1.116)

Independently, since the ψi’s are linear combinations of the Φj ’s, we get that

∫

B0(
1

µ̄ε
)
|∇ψi|2dx = µi

∫

B0( 1
µ̄ε

)
V 2⋆−2

0 ψ2
i dx+ o(1) (12.1.117)
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At last, it follows from (12.1.100) that

1 +
∫

B0( 1
µ̄ε

)
W 2⋆−2

ε ψ2
i dx = 2

∫

B0( 1
µ̄ε

)
W 2⋆−2

ε ϕ̂i,εψidx+ o(1) (12.1.118)

Noting that
∫

B0( 1
µ̄ε

)
(∇ϕ̂i,ε,∇ψi) dx =

∫

B0( 1
µ̄ε

)
ϕ̂i,ε∆ψidx (12.1.119)

we get by combining (12.1.114)-(12.1.119) that (12.1.113) holds. Coming back to (12.1.111), it
follows from (12.1.112) and (12.1.113) that

αi,ε = o
(∫

B
|∇wε|2dx

)

(12.1.120)

Then, by (12.1.110) and (12.1.120),
∫

B
|∇wε|2dx ≥ o

(∫

B
|∇wε|2dx

)

+ µk0+1,ε

∫

B
U2⋆−2

ε R2
εdx (12.1.121)

Independently, it is easily seen that

∫

B
U2⋆−2

ε w2
εdx =

k
∑

i=1

α2
i,ε +

∫

B
U2⋆−2

ε R2
εdx

= o
(∫

B
|∇wε|2dx

)

+
∫

B
U2⋆−2

ε R2
εdx

(12.1.122)

Then, it follows from (12.1.121) and (12.1.122) that

lim inf
ε→0

∫

B |∇wε|2dx
∫

B U
2⋆−2
ε w2

εdx
≥ µk0+1 (12.1.123)

and since µk0+1 >
2⋆−1
Kn

, (12.1.123) is in contradiction with (12.1.97). In particular, (12.1.95) is
proved.

The final argument in the proof of (12.1.4) and (12.1.5) goes as follows. Combining (12.1.94)
and (12.1.95) we get that

lim
ε→0

εµ̂2−n
ε =

(n− 4)ωn−1

4n(n− 2)
A2

n (12.1.124)

By (12.1.42),

α lim
ε→0

µ̂4−n
ε r2

ε =
(n− 4)ωn−1A

2
n

16n(n− 1)
(12.1.125)

when n ≥ 5, and by (12.1.56),

lim
ε→0

Bεr
n+2
ε =

2n(n + 2)

ωn−1
(12.1.126)

It follows from (12.1.124)-(12.1.126) that

lim
ε→0

Bεε
(n−4)(n+2)

2(n−2)

=
2n(n+ 2)ω2(n+2)/n

n

ω
2n/(n−2)
n−1

(

4n−3n(n− 2)(n− 4)
)−n+2

n−2

(

4(n− 1)

n− 2
α

)
n+2

2
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when n ≥ 5. This proves (12.1.5). We need some more work to get (12.1.4). Assuming that
n = 4, it follows from (12.1.69) that ε = O(µ̂2

ε). Hence,

lim sup
ε→0

| ln µ̂ε|
| ln ε| ≤ 1

2
(12.1.127)

By (12.1.43) and (12.1.56),

lim
ε→0

| ln µ̂ε|r2
ε =

4

α

lim
ε→0

Bεr
6
ε =

48

ω3

(12.1.128)

Writing that

Bε

| ln ε|3 =
Bεr

6
ε

(r2
ε | ln µ̂ε|)3

(

| ln µ̂ε|
| ln ε|

)3

it follows from (12.1.127) and (12.1.128) that

lim sup
ε→0

Bε

| ln ε|3 ≤ 3α3

32ω3
(12.1.129)

Conversely, we claim that

lim inf
ε→0

Bε

| ln ε|3 ≥ 3α3

32ω3
(12.1.130)

For that purpose, we let fε be the function given by

fε(x) =
λε

λ2
ε +

√
ω4

4
|x|2

+ aελε

(

|x|2 − bε
)

(12.1.131)

where λε, aε, and bε are real numbers. Given kε > 0, we let also f̃ε be the function given by

f̃ε(x) =
1

kε

fε

(

1

kε

x
)

in B0(kε)

f̃ε(x) = 0 in B\B0(kε)

(12.1.132)

We choose kε such that

k2
ε =

8

α| ln ε| (12.1.133)

and λε > 0 small such that

ε =
λ2

ε

| lnλε|
(12.1.134)

Moreover, we choose aε and bε such that f̃ε is C1 in B, and hence such that

aε =

√
ω4

4
(

λ2
ε +

√
ω4

4

)2 and bε =
1

aε

(

λ2
ε +

√
ω4

4

) + 1 (12.1.135)
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In particular,

aε →
4√
ω4

bε → 2

(12.1.136)

as ε→ 0. Noting that fε ≥ 0 in B, we write now that for any ε > 0,

∫

B
|∇f̃ε|2dx− α

∫

B
f̃ 2

ε dx+Bε

(∫

B
f̃εdx

)2

≥ 1 − ε

K2
4

(∫

B
f̃ 4

ε dx
)1/2

(12.1.137)

Easy computations give that

∫

B
f̃ 2

ε dx =
16ω3

ω4
k2

ελ
2
ε| lnλε| + o(k2

ελ
2
ε| lnλε|) (12.1.138)

and, thanks to (12.1.136), that

∫

B
f̃εdx =

2ω3k
3
ελε

3
√
ω4

(1 + o(1)) (12.1.139)

Similarly, we find with (12.1.136) that

∫

B
|∇f̃ε|2dx =

1

K2
4

− 256ω3

3ω4

λ2
ε + o(λ2

ε) (12.1.140)

and that
(∫

B
f̃ 4

ε dx
)1/2

= 1 − 128ω3K
2
4

ω4
λ2

ε + o(λ2
ε) (12.1.141)

Plugging (12.1.138)-(12.1.141) into (12.1.137), it follows that

128ω3

3ω4

λ2
ε +

4ω2
3

9ω4

Bε (1 + o(1)) k6
ελ

2
ε +

ε

K2
4

≥ 16αω3

ω4
k2

ελ
2
ε| lnλε| + o(k2

ελ
2
ε| lnλε|) + o(λ2

ε)

(12.1.142)

By (12.1.133) and (12.1.134), ε = o(λ2
ε) and k2

ε | lnλε| = 4
α

+ o(1). We then get with (12.1.142)
that

Bε

| ln ε|3 ≥ 3α3

32ω3

+ o(1)

and (12.1.130) is proved. Then, thanks to (12.1.129) and (12.1.130),

lim
ε→0

Bε

| ln ε|3 =
3α3

32ω3

and (12.1.4) is also proved.
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12.2 A test function type argument

We let (M, g) be a smooth compact Riemannian manifold, n ≥ 4, whose scalar curvature is
positive somewhere. We let also x0 ∈M be such that

Sg(x0) = max
x∈M

Sg(x)

where Sg is the scalar curvature of g. For δ > 0 small, we consider B0(δ) the Euclidean ball of
center 0 and radius δ, and we still denote by g the metric exp⋆

x0
g. Let us assume that for any

u ∈ C∞
c (B0(δ)),

∫

B0(δ)
|∇u|2dvg + B̂ε

(

∫

B0(δ)
|u|dvg

)2

≥ 1 − ε

Kn

(

∫

B0(δ)
|u|2⋆

dvg

)2/2⋆

(12.2.1)

The goal in this subsection is to prove that

lim inf
ε→0

B̂ε

| ln ε|3 ≥ 1

2304ω3

(

max
x∈M

Sg

)3

(12.2.2)

when n = 4, and that

lim inf
ε→0

B̂εε
(n−4)(n+2)

2(n−2) ≥ Cn

(

max
x∈M

Sg

)
n+2

2

(12.2.3)

when n ≥ 5, where

Cn =
2n(n + 2)ω

2+ 4
n

n

ω
2n

n−2

n−1 (4n−3n(n− 2)(n− 4))
n+2
n−2

is as in subsection 12.1. For that purpose, we let Bε and the uε’s be as in subsection 12.1,
where α is given by

α =
n− 2

4(n− 1)
Sg(0)δ2

Then,

∆uε − αuε +Bε‖uε‖1Σε =
1 − ε

Kn
u2⋆−1

ε in B

uε = 0 on ∂B ,
∫

B
u2⋆

ε dx = 1

(12.2.4)

We let zε be the function in B0(δ) given by

zε(x) = δ1−n
2 uε(

1

δ
x) (12.2.5)

Then,
∫

B0(δ)
|∇zε|2dvg + B̂ε

(

∫

B0(δ)
zεdvg

)2

≥ 1 − ε

Kn

(

∫

B0(δ)
z2⋆

ε dvg

)2/2⋆

(12.2.6)

Thanks to the Cartan expansion of a metric in geodesic normal coordinates,

∫

B0(δ)
zεdvg =

∫

B0(δ)
zεdx+O

(

∫

B0(δ)
|x|2zεdx

)

= δ
n
2
+1
∫

B
uεdx+ δ

n
2
+3O

(∫

B
|x|2uεdx

)
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We have seen in subsection 12.1 that uε has its support in B0(rε) where rε → 0 as ε → 0. Hence
we can write that

(

∫

B0(δ)
zεdvg

)2

= δn+2 (1 + o(1))
(∫

B
uεdx

)2

(12.2.7)

Still thanks to the Cartan expansion of a metric in geodesic normal coordinates, and since zε

is radially symmetrical,
∫

B0(δ)
|∇zε|2dvg =

∫

B0(δ)
|∇zε|2dx−

1

6
Rij(0)

∫

B0(δ)
|∇zε|2xixjdx

+O

(

∫

B0(δ)
|x|4|∇zε|2dx

)

where R stands for the Ricci curvature of g. By (12.2.4) we get that
∫

B0(δ)
|∇zε|2dx =

∫

B
|∇uε|2dx

=
1 − ε

Kn
− Bε

(∫

B
uεdx

)2

+ α
∫

B
u2

εdx

Independently, since uε is radially symmetrical,
∫

B0(δ)
|∇zε|2xixjdx = δ2

∫

B
|∇uε|2xixjdx = δ2 1

n
δij
∫

B
|x|2|∇uε|2dx

Noting that uε has its support in B0(rε), where rε → 0 as ε→ 0, we also have that
∫

B
|x|4|∇zε|2dx = δ4

∫

B
|x|4|∇uε|2dx = o

(∫

B
|x|2|∇uε|2dx

)

Hence,
∫

B0(δ)
|∇zε|2dvg =

1 − ε

Kn
−Bε

(∫

B
uεdx

)2

+ α
∫

B
u2

εdx

− δ2

6n
Sg(0)

∫

B
|x|2|∇uε|2dx+ o

(∫

B
|x|2|∇uε|2dx

)

(12.2.8)

Similar arguments give that
∫

B0(δ)
z2⋆

ε dvg = 1 − δ2

6n
Sg(0)

∫

B
|x|2u2⋆

ε dx+ o
(∫

B
|x|2u2⋆

ε dx
)

and hence that
(

∫

B0(δ)
z2⋆

ε dvg

)2/2⋆

= 1 − (n− 2)δ2

6n2
Sg(0)

∫

B
|x|2u2⋆

ε dx+ o
(∫

B
|x|2u2⋆

ε dx
)

(12.2.9)

Coming back to (12.2.6), we get with (12.2.7)-(12.2.9) that

α
∫

B
u2

εdx+
(

B̂ε (1 + o(1)) δn+2 − Bε

)

(∫

B
uεdx

)2

− δ2

6n
Sg(0)

∫

B
|x|2|∇uε|2dx+ o

(∫

B
|x|2|∇uε|2dx

)

≥ −(n− 2)δ2

6n2Kn
Sg(0)

∫

B
|x|2u2⋆

ε dx+ o
(∫

B
|x|2u2⋆

ε dx
)

(12.2.10)
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With the notations of subsection 12.1,

(∫

B
uεdx

)2

=
A2

nω
2
n−1

4n2(n+ 2)2
µ̂n−2

ε rn+2
ε + o

(

µ̂n−2
ε rn+2

ε

)

(12.2.11)

We also have that ∫

B
u2

εdx = r2
ε

∫

B
û2

εdx

Hence, by (12.1.41) and (12.1.55),

∫

B
u2

εdx =
16ω3

ω4
r2
ε µ̂

2
ε| ln µ̂ε| + o

(

r2
ε µ̂

2
ε| ln µ̂ε|

)

(12.2.12)

if n = 4, and
∫

B
u2

εdx =
4(n− 1)

n− 4
r2
ε µ̂

2
ε + o

(

r2
ε µ̂

2
ε

)

(12.2.13)

if n ≥ 5. Similarly,

∫

B
|x|2u2⋆

ε dx = r2
ε

∫

B
|x|2û2⋆

ε dx = r2
ε µ̂

2
ε

∫

B0(
1

µ̂ε
)
|x|2

(

µ̂
n
2
−1

ε ûε(µ̂εx)
)2⋆

dx

and thanks to (12.1.32) and (12.1.33), we have that

∫

B0( 1
µ̂ε

)
|x|2

(

µ̂
n
2
−1

ε ûε(µ̂εx)
)2⋆

dx→
∫

IR
n
|x|2V 2⋆

0 dx

as ε→ 0. It is easily seen, see for instance Demengel and Hebey [11], that

∫

IR
n
|x|2V 2⋆

0 dx = 2n+1ω
−n+2

n
n ωn−1

Γ(n+2
2

)Γ(n−2
2

)

Γ(n)

and since

Γ(n) =
2n−1ωn−1

ωn

Γ(
n

2
)2

we have that
∫

IR
n
|x|2V 2⋆

0 dx =
4n

(n− 2)ω
2/n
n

Hence,
∫

B
|x|2u2⋆

ε dx =
4n

(n− 2)ω
2/n
n

r2
ε µ̂

2
ε + o

(

r2
ε µ̂

2
ε

)

(12.2.14)

Integrating by parts, and thanks to (12.2.4), we also have that

∫

B
|x|2|∇uε|2dx = n

∫

B
u2

εdx+
∫

B
|x|2uε∆uεdx

= n
∫

B
u2

εdx+
1 − ε

Kn

∫

B
|x|2u2⋆

ε dx− Bε‖uε‖1

∫

B
|x|2u2⋆

ε dx+ α
∫

B
|x|2u2

εdx
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Noting that

∫

B
|x|2uεdx = r2

εO
(
∫

B
uεdx

)

and
∫

B
|x|2u2

εdx = o
(
∫

B
u2

εdx
)

it follows that
∫

B
|x|2|∇uε|2dx =

64ω3

ω4
r2
ε µ̂

2
ε| lnµε| + o

(

r2
ε µ̂

2
ε| lnµε|

)

+O
(

Bεr
8
ε µ̂

2
ε

)

(12.2.15)

when n = 4, and

∫

B
|x|2|∇uε|2dx =

n(n2 − 4)

n− 4
r2
ε µ̂

2
ε + o

(

r2
ε µ̂

2
ε

)

+O
(

Bεr
n+4
ε µ̂n−2

ε

)

(12.2.16)

when n ≥ 5. Let us assume first that n ≥ 5. Plugging (12.2.11)-(12.2.16) into (12.2.10), and
thanks to the choice we made for α, we get that

(

B̂εδ
n+2 −Bε

) A2
nω

2
n−1

4n2(n+ 2)2
rn+2
ε µ̂n−2

ε

≥ o
(

r2
ε µ̂

2
ε

)

+ o
(

B̂εr
n+2
ε µ̂n−2

ε

)

+O
(

Bεr
n+4
ε µ̂n−2

ε

)

so that
(

B̂ε

Bε
δn+2 − 1

)

A2
nω

2
n−1

4n2(n + 2)2
≥ o

(

r−n
ε µ̂4−n

ε B−1
ε

)

+ o

(

B̂ε

Bε

)

+O
(

r2
ε

)

(12.2.17)

By (12.1.42) and (12.1.56),
r−n
ε µ̂4−n

ε B−1
ε = O(1)

Hence, (12.2.17) gives that

lim inf
ε→0

B̂ε

Bε
δn+2 ≥ 1

and thanks to (12.1.5) we get that

lim inf
ε→0

B̂εε
(n−4)(n+2)

2(n−2) ≥ CnSg(0)
n+2

2

where

Cn =
2n(n + 2)ω

2+ 4
n

n

ω
2n

n−2

n−1 (4n−3n(n− 2)(n− 4))
n+2
n−2

This proves (12.2.3). Let us assume now that n = 4. Plugging (12.2.11)-(12.2.16) into (12.2.10),
and thanks to the choice we made for α, we get that

B̂ε

Bε
δ6 − 1 ≥ o

(

B̂ε

Bε

)

+ o
(

B−1
ε r−4

ε | ln µ̂ε|
)

+O
(

r2
ε

)

(12.2.18)

By (12.1.43) and (12.1.56),
B−1

ε r−4
ε | ln µ̂ε| = O(1)
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Hence, (12.2.18) gives that

lim inf
ε→0

B̂ε

Bε
δ6 ≥ 1

and thanks to (12.1.4) we get that

lim inf
ε→0

B̂ε

| ln ε|3 ≥ 1

2304ω3

Sg(0)3

This proves (12.2.4).

12.3 The Riemannian case

As in subsection 12.2, we let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 4. We assume that the scalar curvature Sg of g is such that maxx∈M Sg > 0. For ε > 0

small, we let B̂ε be the smallest B such that for all u ∈ C∞(M),

1 − ε

Kn

‖u‖2
2⋆ ≤ ‖∇u‖2

2 +B‖u‖2
1

As in subsection 12.1, it can be proved that

inf
u∈C∞(M)\{0}

‖∇u‖2
2 + B̂ε‖u‖2

1

‖u‖2
2⋆

=
1 − ε

Kn
(12.3.1)

With respect to the notations of the introduction, we have that

B̂ε =
1 − ε

Kn
BKnε

1−ε
(g) and Bε(g) = (Kn + ε) B̂ ε

Kn+ε
(12.3.2)

The goal in this section is to prove that

lim sup
ε→0

B̂ε

| ln ε|3 ≤ 1

2304ω3

(

max
x∈M

Sg

)3

(12.3.3)

when n = 4, and that

lim sup
ε→0

B̂εε
(n−4)(n+2)

2(n−2) ≤ Cn

(

max
x∈M

Sg

)
n+2

2

(12.3.4)

when n ≥ 5, where

Cn =
2n(n + 2)ω

2+ 4
n

n

ω
2n

n−2

n−1 (4n−3n(n− 2)(n− 4))
n+2
n−2

is as in subsections 12.1 and 12.2. As indicated at the end of this section, the second part
Theorem 4.4 follows from (12.3.3), (12.3.4), and what is proved in subsection 12.2.

Thanks to Theorem 4.1, B̂ε → +∞ as ε → 0. Independently, the LHS in (12.3.1) being
less than 1/Kn, it easily follows from standard variational arguments, as in subsection 12.1,
that there exists a minimizer for the infimum in (12.3.1). With no risk of confusion with the
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notations of subsection 12.1, we denote by uε this minimizer. We then get that for any ε > 0,
there exists uε ∈ C1,β(M), 0 < β < 1, such that

∆guε + B̂ε‖uε‖1Σε =
1 − ε

Kn
u2⋆−1

ε (12.3.5)

and ∫

M
u2⋆

ε dvg = 1 , uε ≥ 0 inM (12.3.6)

where ∆g = −divg(∇) is the Riemannian Laplacian, and Σε ∈ L∞(M), 0 ≤ Σε ≤ 1, is such
that Σεuε = uε. We let xε be a point where uε is maximum, and set

µ
1−n

2
ε = ‖uε‖∞ = uε(xε) (12.3.7)

Multiplying (12.3.5) by uε and integrating over M , we get with (12.3.6) that

B̂ε‖uε‖2
1 ≤

1

Kn

Since B̂ε → +∞ as ε → 0, it follows that ‖uε‖1 → 0 as ε → 0. In particular, by Hölder’s
inequality and (12.3.6), ‖uε‖2 → 0 as ε → 0. Noting that

1 =
∫

M
u2⋆

ε dvg ≤ µ
−n+2

2
ε

∫

M
uεdvg

we also have that
lim
ε→0

µε = 0 (12.3.8)

Independently, by Hebey and Vaugon [27], there exists B > 0 such that for any u ∈ H2
1 (M),

‖u‖2
2⋆ ≤ Kn‖∇u‖2

2 +B‖u‖2
2

Taking u = uε in this inequality,

1 − B‖uε‖2
2 ≤ Kn‖∇uε‖2

2 = 1 − ε−KnB̂ε‖uε‖2
1

and it follows that
lim
ε→0

B̂ε‖uε‖2
1 = 0 (12.3.9)

As in section 8, there exists x0 ∈M such that for any δ > 0,

lim
ε→0

∫

Bx0 (δ)
u2⋆

ε dvg = 1

and
uε → 0 in C0

loc(M\{x0}) (12.3.10)

as ε goes to 0. According to what we just said, xε → x0 and µε → 0 as ε → 0. By (12.3.9),
noting that

1 = ‖uε‖2⋆

2⋆ ≤ ‖uε‖2⋆−1
∞ ‖uε‖1

we get that

lim
ε→0

B̂εµ
n+2

2
ε ‖uε‖1 = 0 (12.3.11)

In what follows we let expxε
be the exponential map at xε. There clearly exists δ > 0, indepen-

dent of ε, such that for any ε, expxε
is a diffeomorphism from B0(δ) ⊂ IRn onto Bxε(δ). As a

starting point in the proof of (12.3.3) and (12.3.4), we prove weak estimates on the uε’s.
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12.3.1 Weak Estimates

For x ∈ B0(µ
−1
ε δ), we set

g̃ε(x) =
(

exp⋆
xε
g
)

(µεx) , ũε(x) = µ
n
2
−1

ε uε

(

expxε
(µεx)

)

and Σ̃ε(x) = Σε

(

expxε
(µεx)

)

. It is easily seen that

∆g̃εũε + B̂εµ
n+2

2
ε ‖uε‖1Σ̃ε =

1 − ε

Kn
ũ2⋆−1

ε (12.3.12)

Moreover,
ũε(0) = ‖ũε‖∞ = 1 (12.3.13)

and if ξ stands for the Euclidean metric of IRn,

lim
ε→0

g̃ε = ξ in C2(K) (12.3.14)

for any compact subset K of IRn. Thanks to (12.3.11)-(12.3.14), we get by standard elliptic
theory, as developed in Gilbarg-Trudinger [22], that there exists some ũ ∈ C1(IRn) such that
for any compact subset K of IRn,

lim
ε→0

ũε = ũ in C1(K) (12.3.15)

Clearly, ũ(0) = 1 and ũ 6≡ 0. Moreover, it is easily seen that ũ ∈ D2
1(IR

n), where D2
1(IR

n) is
the homogeneous Euclidean Sobolev space. By passing to the limit as ε goes to 0 in (12.3.12),
according to (12.3.11), (12.3.14), and (12.3.15), we get that ũ is a solution of

∆ũ =
1

Kn
ũ2⋆−1

By Caffarelli-Gidas-Spruck [8], and also Obata [32],

ũ(x) =

(

1 +
ω2/n

n

4
|x|2

)1−n
2

(12.3.16)

Noting that ũ is of norm 1 in L2⋆
(IRn), and that for any R > 0,

∫

Bxε(Rµε)
u2⋆

ε dvg =
∫

B0(R)
ũ2⋆

ε dvg̃ε

we get that

lim
ε→0

∫

Bxε (Rµε)
u2⋆

ε dvg = 1 −
∫

IR
n\B0(R)

ũ2⋆

dx

Hence,

lim
R→+∞

lim
ε→0

∫

Bxε(Rµε)
u2⋆

ε dvg = 1 (12.3.17)

We claim now that the two following estimates hold. On the one hand that there exists C > 0,
such that for any ε, and any x,

dg(xε, x)
n
2
−1uε(x) ≤ C (12.3.18)
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where dg is the distance with respect to g. On the other hand that

lim
R→+∞

lim
ε→0

sup
x∈M\Bxε(Rµε)

dg(xε, x)
n
2
−1uε(x) = 0 (12.3.19)

In order to prove (12.3.18), we set

vε(x) = dg(xε, x)
n
2
−1uε(x)

and assume by contradiction that for some subsequence,

lim
ε→0

‖vε‖∞ = +∞ (12.3.20)

Let yε be some point in M where vε is maximum. By (12.3.10), yε → x0 as ε → 0, while by
(12.3.20),

lim
ε→0

dg(xε, yε)

µε

= +∞ (12.3.21)

Fix now δ > 0 small, and set

Ωε = uε(yε)
2

n−2 exp−1
yε

(Bxε(δ))

For x ∈ Ωε, define

ṽε(x) = uε(yε)
−1uε

(

expyε
(uε(yε)

− 2
n−2x)

)

and
hε(x) =

(

exp⋆
yε
g
) (

uε(yε)
− 2

n−2x
)

It easily follows from (12.3.20), since M is compact, that uε(yε) → +∞ as ε→ 0. Hence,

lim
ε→0

hε = ξ in C2 (B0(2)) (12.3.22)

where ξ is the Euclidean metric. Independently, we have that

∆hε ṽε ≤
1 − ε

Kn
ṽ2⋆−1

ε (12.3.23)

Since vε(yε) goes to +∞, for ε small, and all x ∈ B0(2),

dg

(

xε, expyε
(uε(yε)

− 2
n−2x)

)

≥ 1

2
dg(xε, yε) (12.3.24)

This implies that

ṽε(x) ≤ 2
n
2
−1dg(xε, yε)

1−n
2 uε(yε)

−1vε

(

expyε
(uε(yε)

− 2
n−2x)

)

≤ 2
n
2
−1dg(xε, yε)

1−n
2 uε(yε)

−1vε(yε)

so that for ε small,
sup

x∈B0(2)
ṽε(x) ≤ 2

n
2
−1 (12.3.25)
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By (12.3.21) and (12.3.24), given R > 0, and for ε small,

Byε(2uε(yε)
− 2

n−2 )
⋂

Bxε(Rµε) = ∅ (12.3.26)

Noting that
∫

B0(2)
ṽ2⋆

ε dvhε =
∫

Byε (2uε(yε)
− 2

n−2 )
u2⋆

ε dvg

it follows from (12.3.17) and (12.3.26) that

lim
ε→0

∫

B0(2)
ṽ2⋆

ε dvhε = 0 (12.3.27)

By (12.3.22), (12.3.23), (12.3.25), (12.3.27), and the De Giorgi-Nash-Moser iterative scheme we
get that

lim
ε→0

sup
x∈B0(1)

ṽε(x) = 0

But ṽε(0) = 1, so that (12.3.20) must be false. This proves (12.3.18). In order to prove (12.3.19),
we let vε be as above, and proceed once more by contradiction. Then there exists yε ∈M and
k0 > 0 such that

lim
ε→0

dg(xε, yε)

µε
= +∞ and vε(yε) ≥ k0

As above, we fix δ > 0 small, and set

Ωε = uε(yε)
2

n−2 exp−1
yε

(Bxε(δ))

For x ∈ Ωε, we define

ṽε(x) = uε(yε)
−1uε

(

expyε
(uε(yε)

− 2
n−2x)

)

and
hε(x) =

(

exp⋆
yε
g
) (

uε(yε)
− 2

n−2x
)

Once again

∆hε ṽε ≤
1 − ε

Kn

ṽ2⋆−1
ε

As when proving (12.3.18), for any x ∈ B0(
1
2
k

2
n−2

0 ),

dg(xε, zε) ≥
1

2
dg(xε, yε)

and
ṽε(x) = uε(yε)

−1vε(zε)dg(xε, zε)
1−n

2

where zε = expyε
(uε(yε)

− 2
n−2x). It follows from (12.3.18) that

ṽε(x) ≤ C2
n
2
−1k−1

0

Noting that for R > 0, and for ε small,

Byε

(

1

2
k

2
n−2

0 uε(yε)
− 2

n−2

)

⋂

Bxε(Rµε) = ∅

we conclude as when proving (12.3.18) that (12.3.19) holds.

Now we need stronger estimates than (12.3.18) and (12.3.19). This is the subject of the
following subsection.
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12.3.2 Strong Estimates.1

In order to get stronger estimates than (12.3.18) and (12.3.19), we let h0 ∈ C∞(M) be such
that h0 ≥ 0, h0 6≡ 0, h0 ≡ 0 in Bx0(δ0). As a remark, it is easy to check that such a choice of
h0 implies that ∆g + h0 is coercive. We define Lε by

Lεu = ∆gu+ h0u−
1 − ε

Kn
u2⋆−2

ε u

and claim that Lε satisfies the maximum principle in M\Bxε(Rµε) for R > 0 large and ε > 0
small. Let indeed z ∈ C1 (M\Bxε(Rµε)) be such that z ≥ 0 on ∂Bxε(Rµε) and Lεz ≥ 0. Set
z− = max(0,−z). Then,

0 ≤
∫

M\Bxε (Rµε)
z−Lεzdvg

= −
∫

M\Bxε (Rµε)
|∇z−|2dvg −

∫

M\Bxε(Rµε)
h0(z

−)2dvg

+
1 − ε

Kn

∫

M\Bxε (Rµε)
u2⋆−2

ε (z−)2dvg

while, thanks to Hölder’s inequality,
∫

M\Bxε (Rµε)
u2⋆−2

ε (z−)2dvg ≤ ‖uε‖2⋆−2
L2⋆(M\Bxε (Rµε))

‖z−‖2
L2⋆(M\Bxε (Rµε))

Thus,

0 ≤ −‖∇z−‖2
L2(M\Bxε (Rµε)) − ‖

√

h0z
−‖2

L2(M\Bxε (Rµε))

+
1 − ε

Kn
‖uε‖2⋆−2

L2⋆(M\Bxε (Rµε))
‖z−‖2

L2⋆(M\Bxε (Rµε))

(12.3.28)

By (12.3.17),
lim

R→+∞
lim
ε→0

‖uε‖L2⋆(M\Bxε (Rµε)) = 0

It follows that for any A > 0, there exists εA > 0 and RA > 0 such that for R ≥ RA and
ε ∈ (0, εA),

‖uε‖L2⋆ (M\Bxε (Rµε)) ≤ A

Let λ > 0, given by the coercivity of ∆g + h0, be such that

λ‖z−‖2
L2⋆(M\Bxε (Rµε)) ≤ ‖∇z−‖2

L2(M\Bxε (Rµε)) + ‖
√

h0z
−‖2

L2(M\Bxε (Rµε))

Coming back to (12.3.28), we get that

0 ≤ ‖z−‖2
L2⋆ (M\Bxε (Rµε))

(

1 − ε

Kn
A2⋆−2 − λ

)

Choosing A > 0 small, this implies that z− ≡ 0. The claim is proved. Now, thanks to the De
Giorgi-Nash-Moser iterative scheme applied to ∆guε ≤ K−1

n u2⋆−1
ε , we have that for any δ > 0,

there exists Cδ > 0 such that
sup

M\Bx0 (δ)
uε ≤ Cδ‖uε‖1 (12.3.29)
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Taking δ = δ0, this implies that
Lεuε ≤ 0 inM (12.3.30)

We let ε0 > 0 be such that ∆g + h0 − ε0 is still coercive in M , and let G(x, y) be the Green
function of this operator. We set H(x) = G(xε, x). Given ν ∈ (0, 1), we have that

LεH
1−ν

H1−ν
= ν(1 − ν)

|∇H|2
H2

+ ĥ0 −
1 − ε

Kn
u2⋆−2

ε (12.3.31)

where ĥ0 = (1 − ν)ε0 + νh0. A standard property of the Green function (F.Robert, private
communication) is that there exists ρ > 0 and C > 0 such that for any x ∈ Bxε(ρ)\{xε},

|∇G(xε, x)|
G(xε, x)

≥ C
1

dg(xε, x)

where dg is the distance with respect to g. We also have that

∣

∣

∣dg(xε, x)
n−2G(xε, x)

∣

∣

∣ ≤ C

for any x 6= xε, where C > 0 does not depend on ε, and that

dg(xε, x)
n−2G(xε, x) ≥ C

as soon as dg(xε, x) ≤ r0, where both r0 > 0 and C > 0 do not depend on ε. Then, for
x ∈ Bxε(ρ)\{xε},

LεH
1−ν

H1−ν
(x) ≥ dg(xε, x)

−2
(

Cν(1 − ν) − 1 − ε

Kn
dg(xε, x)

2u2⋆−2
ε

)

and thanks to (12.3.19) we get that for R > 0 sufficiently large and ε > 0 sufficiently small,

LεH
1−ν

H1−ν
≥ 0 in Bxε(ρ)\Bxε(Rµε) (12.3.32)

In M\Bxε(ρ), we have (12.3.10). Thus, by (12.3.31), and for ε > 0 small,

LεH
1−ν

H1−ν
≥ ĥ0 −

1 − ε

Kn

u2⋆−2
ε ≥ 0 inM\Bxε(ρ) (12.3.33)

Summarizing, it follows from (12.3.30), (12.3.32), and (12.3.33), that there exists R > 0,
depending on ν, such that

Lεuε ≤ 0 ≤ LεH
1−ν inM\Bxε(Rµε) (12.3.34)

By (12.3.15) and (12.3.16), there exists C > 0 such that

uε ≤ Cµ
(n
2
−1)(1−2ν)

ε H1−ν on ∂Bxε(Rµε) (12.3.35)

The maximum principle, (12.3.34), and (12.3.35), then give that

uε(x) ≤ Cµ
(n
2
−1)(1−2ν)

ε dg(xε, x)
(2−n)(1−ν)
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in M\Bxε(Rµε). Noting that this inequality is satisfied in Bxε(Rµε) thanks to (12.3.15) and
(12.3.16), we have proved that for any ν ∈ (0, 1), there exists C(ν) > 0 such that

uε(x) ≤ Cµ
(n
2
−1)(1−2ν)

ε dg(xε, x)
(2−n)(1−ν) (12.3.36)

for any ε > 0 and any x ∈ M\{xε}. Now we claim that there actually exists C > 0 such that
for any ε > 0 and any x ∈M ,

µ
1−n

2
ε dg(xε, x)

n−2uε(x) ≤ C (12.3.37)

In other words, we claim that (12.3.36) holds with ν = 0. We let G0(x, y) be the Green function
of ∆g + h0. Thanks to (12.3.29), noting that Σε(x) = 1 if uε(x) 6= 0,

h0uε − B̂ε‖uε‖1Σε ≤ 0

in M when ε > 0 is small. For (yε) a sequence in M , we can then write that for ε > 0 small,

uε(yε) =
∫

M
G0(x, yε) (∆guε + h0uε) (x)dvg(x)

=
1 − ε

Kn

∫

M
G0(x, yε)u

2⋆−1
ε dvg

+
∫

M
G0(x, yε)

(

h0uε − B̂ε‖uε‖1Σε

)

(x)dvg(x)

≤ 1

Kn

∫

M
G0(x, yε)u

2⋆−1
ε dvg

(12.3.38)

We set
Φε = uε(yε)µ

1−n
2

ε dg(xε, yε)
n−2

and let Hε be such that Hε(x) = G0(x, yε). We distinguish three cases.

Case 1: we assume that µ−1
ε dg(xε, yε) → R as ε → 0, R ∈ [0,+∞). Then, thanks to

(12.3.18), (Φε) is bounded.

Case 2: we assume that yε → y0 as ε → 0 where y0 6= x0. We let δ > 0 be such that
2δ ≤ dg(x0, y0), and write that

∫

M
G0(x, yε)u

2⋆−1
ε dvg ≤

∫

Bxε(δ)
Hεu

2⋆−1
ε dvg +

∫

M\Bxε(δ)
Hεu

2⋆−1
ε dvg

As above, standard properties of the Green function give that
∫

Bxε(δ)
Hεu

2⋆−1
ε dvg ≤ C

∫

Bxε(δ)
u2⋆−1

ε dvg

and that ∫

M\Bxε (δ)
Hεu

2⋆−1
ε dvg ≤ C

∫

M\Bxε (δ)
dg(x, yε)

2−nu2⋆−1
ε dvg

where C > 0 is independent of ε. Thanks to (12.3.36),

∫

M\Bxε (δ)
dg(x, yε)

2−nu2⋆−1
ε dvg = o

(

µ
n
2
−1

ε

)
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Independently, we can write that
∫

Bxε (δ)
u2⋆−1

ε dvg =
∫

Bxε(µε)
u2⋆−1

ε dvg +
∫

Bxε (δ)\Bxε (µε)
u2⋆−1

ε dvg

By (12.3.15),
∫

Bxε(µε)
u2⋆−1

ε dvg = O
(

µ
n
2
−1

ε

)

while by (12.3.36), taking ν > 0 sufficiently small,

∫

Bxε(δ)\Bxε (µε)
u2⋆−1

ε dvg = O
(

µ
n
2
−1

ε

)

Coming back to (12.3.38), we get that (Φε) is bounded.

Case 3: we assume that µ−1
ε dg(xε, yε) → +∞ and that dg(xε, yε) → 0 as ε → 0. We write

that ∫

M
G0(x, yε)u

2⋆−1
ε dvg ≤

∫

Ωε

Hεu
2⋆−1
ε +

∫

M\Ωε

Hεu
2⋆−1
ε dvg

where Ωε = Byε(
dg(xε,yε)

2
). As above, standard properties of the Green function and (12.3.36)

give that

∫

M
G0(x, yε)u

2⋆−1
ε dvg ≤ Cµ

n+2
2

(1−2ν)
ε dg(xε, yε)

(n+2)(ν−1)
∫

Ωε

dg(x, yε)
2−ndvg

+Cdg(xε, yε)
2−n

∫

M
u2⋆−1

ε dvg

Then,

∫

M
G0(x, yε)u

2⋆−1
ε dvg ≤ Cµ

n+2
2

(1−2ν)
ε dg(xε, yε)

(n+2)(ν−1)+2

+Cdg(xε, yε)
2−nµ

n
2
−1

ε

where C > 0 does not depend on ε. Coming back to (12.3.38), we get that

uε(yε)µ
1−n

2
ε dg(xε, yε)

n−2 ≤ C

(

µε

dg(xε, yε)

)2−(n+2)ν

+ C

and since µ−1
ε dg(xε, yε) → +∞ as ε → 0, taking ν < 2

n+2
, we get once again that (Φε) is

bounded.

Summarizing cases 1 to 3, we have proved that for any sequence (yε) in M , there exists C > 0,
independent of ε, such that

uε(yε)µ
1−n

2
ε dg(xε, yε)

n−2 ≤ C

This proves (12.3.37).

Thanks to (12.3.15), (12.3.16), and (12.3.37), integrating (12.3.5) over M and letting ε → 0
give that

lim
ε→0

B̂ε‖uε‖1‖Σε‖1µ
1−n

2
ε =

ωn−1

n
An (12.3.39)
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where An is given by (12.1.36). Independently, let δ > 0 small, and η be a smooth function
such that η = 0 in Bx0(

δ
2
) and η = 1 in M\Bx0(δ). Multiplying (12.3.5) by η, and integrating

over M , we get with (12.3.10) that

B̂ε‖uε‖1

∫

M
ηΣεdvg = O (‖uε‖1)

Since B̂ε → +∞ as ε → 0, it follows that
∫

M ηΣεdvg → 0 as ε → 0. In particular,

∫

M\Bx0 (δ)
Σεdvg → 0

as ε→ 0. Since this holds for any δ > 0 small, and since 0 ≤ Σε ≤ 1, we have proved that

∫

M
Σεdvg → 0 (12.3.40)

as ε→ 0. We let rε > 0 be such that
∫

M
Σεdvg =

ωn−1

n
rn
ε (12.3.41)

Then, rε → 0 as ε→ 0, and thanks to (12.3.39),

lim
ε→0

B̂ε‖uε‖1r
n
εµ

1−n
2

ε = An (12.3.42)

Now, for x ∈ B0(δr
−1
ε ), δ > 0 small, we define

ĝε(x) =
(

exp⋆
xε
g
)

(rεx) , ûε(x) = r
n
2
−1

ε uε

(

expxε
(rεx)

)

and Σ̂ε(x) = Σε

(

expxε
(rεx)

)

. Then,

∆ĝεûε + B̂ε‖uε‖1r
n
2
+1

ε Σ̂ε =
1 − ε

Kn

û2⋆−1
ε (12.3.43)

Thanks to (12.3.41),

lim sup
ε→0

∫

B0(δr−1
ε )

Σ̂εdvĝε ≤
ωn−1

n
(12.3.44)

We set
µ̂ε =

µε

rε

(12.3.45)

It follows from (12.3.11) and (12.3.42) that µ̂ε → 0 as ε → 0. Independently, (12.3.37) gives
that

|x|n−2µ̂
1−n

2
ε ûε(x) ≤ C (12.3.46)

where C > 0 is independent of ε. By (12.3.43),

∆ĝε(µ̂
1−n

2
ε ûε) + B̂ε‖uε‖1µ̂

1−n
2

ε r
n
2
+1

ε Σ̂ε =
1 − ε

Kn

µ̂2
ε(µ̂

1−n
2

ε ûε)
2⋆−1 (12.3.47)
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and (12.3.42) gives that

B̂ε‖uε‖1r
n
2
+1

ε µ̂
1−n

2
ε → An (12.3.48)

as ε → 0. Since rε → 0 we also have that ĝε converges C2 to the Euclidean metric in any compact

subset of the Euclidean space. By (12.3.46), the µ̂
1−n

2
ε ûε’s are bounded in any compact subset

of IRn\{0}. By (12.3.47) and (12.3.48) they satisfy an equation with bounded coefficients. We
can therefore assume that, up to a subsequence,

µ̂
1−n

2
ε ûε → H in C1

loc (IRn\{0}) (12.3.49)

where H is a solution of
∆H + AnΣ̂ = 0 in IRn\{0} (12.3.50)

and Σ̂ is such that Σ̂ε ⇀ Σ̂ in Lp(IRn) for any p ≥ 1. Thanks to (12.3.44), and since Σ̂ε ≤ 1,
‖Σ̂‖∞ ≤ 1. By (12.3.46) we clearly have that

|x|n−2H(x) ≤ C (12.3.51)

for any x ∈ IRn\{0}, where C > 0 is independent of x.

We claim now that H can be computed explicitly. This is the subject of the following
subsection.

12.3.3 An explicit expression for H

We claim first that H can be expressed as

H(x) =
λ

|x|n−2
+H (12.3.52)

where λ is real and H is smooth. For the sake of completeness, we prove this elementary claim
by using basic notions from the theory of harmonic functions. A possible reference for such
notions is the excellent Han and Lin [23]. As a preliminary remark, we claim that a bounded
harmonic function in IRn\B, n ≥ 3, has a limit at infinity. In order to prove this preliminary
claim, one may proceed as follows. Let u be harmonic and bounded in IRn\B. Up to replacing
u by u+A, A > 0 a suitable constant, we can assume that u is nonnegative. Given R > 1, we
let vR be the smooth function in B0(R) such that ∆vR = 0 in B0(R) and vR = u on ∂B0(R).
When |x| < R, vR(x) is given by the Poisson integral formula

vR(x) =
∫

∂B0(R)
K(x, y)u(y)dσ(y)

The Poisson kernel K is such that K ≥ 0 and
∫

∂B0(R)
K(x, y)dσ(y) = 1

for all |x| < R. In particular, we get that vR is nonnegative and such that for any x ∈ B0(R),
|vR| ≤ K, where K is a bound for |u| in IRn\B. Given x and y two points in IRn, and R large,
the Harnack inequality for harmonic functions gives that

lim
R→+∞

vR(y)

vR(x)
= 1 (12.3.53)
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We set now w = u − vR, and let r > 1. Clearly, |w(x)| ≤ Krr
n−2|x|2−n on ∂B0(r), where

Kr is the maximum of |w| over ∂B0(r). Since w and 1
|x|n−2 are harmonic in B0(R)\B0(r), the

maximum principle gives that |w(x)| ≤ Krr
n−2|x|2−n in B0(R)\B0(r). According to what we

said above, Kr ≤ 2K. Hence,

|u(x) − vR(x)| ≤ 2Krn−2

|x|n−2
(12.3.54)

in B0(R)\B0(r). We fix x in IRn. Since the vR(x)’s are bounded, there exists a sequence (Rk),
with the property that Rk → +∞ as k → +∞, and there exists λ ∈ IR, such that vRk

(x) → λ
as k → +∞. Thanks to (12.3.53), we get that for any x ∈ IRn, vRk

(x) → λ as k → +∞.
Coming back to (12.3.54), taking R = Rk, and passing to the limit k → +∞, we get that for
any x ∈ IRn\B0(r),

|u(x) − λ| ≤ 2Krn−2

|x|n−2

Then, u(x) → λ as |x| → +∞, and this proves our preliminary claim. We let now u ∈ C1(B)
be such that ∆u = −AnΣ̂ in B, and set H̃ = H − u. Then ∆H̃ = 0 in B\{0}. We let Ĥ be the
Kelvin transform of H̃ given by

Ĥ(x) =
1

|x|n−2
H̃

(

x

|x|2
)

It is easily seen that ∆Ĥ = 0 in IRn\B. Moreover, thanks to (12.3.51), Ĥ is bounded. The
preliminary claim we just proved then gives that there exists λ real such that

lim
x→0

|x|n−2H̃(x) = λ

Let Φ be given by

Φ(x) = H̃(x) − λ

|x|n−2

It is easily seen that Φ is harmonic in B\{0}, and, thanks to what we just proved, we have that
Φ(x) = o (|x|2−n). Standard arguments, see Han and Lin [23], then give that 0 is a removable
singularity for Φ. This proves that H can be expressed as in (12.3.52), and thus our claim.

For convenience, we write that

H(x) =
λ

|x|n−2
+
An

2n
|x|2 +H0(x) (12.3.55)

where H0 ∈ C1(IRn) is such that
∆H0 = An(1 − Σ̂) (12.3.56)

Let r > 0. By (12.3.15), (12.3.16) and (12.3.37),

µ̂
1−n

2
ε

∫

B0(r)
û2⋆−1

ε dvĝε →
∫

IR
n
ũ2⋆−1dx =

ωn−1

n
KnAn

as ε→ 0. Integrating (12.3.47) over B0(r) and passing to the limit as ε→ 0 we then get that

−
∫

∂B0(r)
∂νHdσ + An

∫

B0(r)
Σ̂dx =

ωn−1

n
An (12.3.57)
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Since
∫

B0(r) Σ̂dx→ 0 as r → 0, and

−
∫

∂B0(r)
∂νHdσ → (n− 2)λωn−1

as r → 0, it follows from (12.3.57) that

λ =
An

n(n− 2)
(12.3.58)

Noting that H ≥ 0, we get with (12.3.58) that

H0 ≥ − An

2(n− 2)
on ∂B

By (12.3.56) and the maximum principle, since ‖Σ̂‖∞ ≤ 1, we get that

H0 ≥ − An

2(n− 2)
in B

In particular, H(x) > 0 for any x ∈ B\{0}, and it follows from (12.3.49) that for any r1 and
r2 such that 0 < r1 < r2 < 1, ûε > 0 in B0(r2)\B0(r1) for ε > 0 small. Then, Σ̂ε = 1 in
B0(r2)\B0(r1) for ε > 0 small, and we get that

∫

B0(r2)\B0(r1)
Σ̂dx = |B0(r2)\B0(r1)|

where |B0(r2)\B0(r1)| is the Euclidean volume of B0(r2)\B0(r1). Letting r1 → 0 and r2 → 1,
we then get that

∫

B
Σ̂dx =

ωn−1

n

We have ‖Σ̂‖∞ ≤ 1, and
∫

IR
n |Σ̂|dx ≤ n−1ωn−1. Thus,

Σ̂ = 1 in B
Σ̂ = 0 in IRn\B

(12.3.59)

In particular, for any annulus A ⊂ IRn\B, we get with (12.3.46) that

µ̂
1−n

2
ε

∫

A
ûεdvĝε = µ̂

1−n
2

ε

∫

A
Σ̂εûεdvĝε ≤ C

∫

A
Σ̂εdvĝε

and since
∫

A Σ̂εdvĝε → ∫

A Σ̂dx as ε → 0, we get with (12.3.59) that H = 0 in IRn\B. Since H
is C1 in IRn\{0}, this implies that

H(x) =
An

n(n− 2)

(

|x|2−n − 1
)

+
An

2n

(

|x|2 − 1
)

in B

H(x) = 0 in IRn\B
(12.3.60)

and we have an explicit expression for H .
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Thanks to (12.3.37),

r
−1−n

2
ε µ̂

1−n
2

ε

∫

M\Bxε(rε)
uεdvg = r

−1−n
2

ε µ̂
1−n

2
ε

∫

M\Bxε (rε)
Σεuεdvg

≤ Cr−2
ε

∫

M\Bxε(rε)

Σε

dg(xε, x)n−2
dvg

≤ Cr−n
ε

∫

M\Bxε (rε)
Σεdvg

and since
r−n
ε

∫

Bxε(rε)
Σεdvg =

∫

B
Σ̂εdvĝε →

∫

B
Σ̂dx =

ωn−1

n

as ε→ 0, we get with (12.3.41) that

r−n
ε

∫

M\Bxε(rε)
Σεdvg → 0

as ε→ 0. Hence,

r
−1−n

2
ε µ̂

1−n
2

ε

∫

M\Bxε(rε)
uεdvg → 0 (12.3.61)

as ε→ 0. Independently, given δ > 0,

r
−1−n

2
ε µ̂

1−n
2

ε

∫

Bxε(δrε)
uεdvg = µ̂

1−n
2

ε

∫

B0(δ)
ûεdvĝε

and it follows from (12.3.46) that

lim
δ→0

lim
ε→0

r
−1−n

2
ε µ̂

1−n
2

ε

∫

Bxε (δrε)
uεdvg = 0 (12.3.62)

At last,

r
−1−n

2
ε µ̂

1−n
2

ε

∫

Bxε (rε)\Bxε (δrε)
uεdvg = µ̂

1−n
2

ε

∫

B\B0(δ)
ûεdvĝε

and we get with (12.3.49) that for any δ ∈ (0, 1),

r
−1−n

2
ε µ̂

1−n
2

ε

∫

Bxε(rε)\Bxε (δrε)
uεdvg →

∫

B\B0(δ)
Hdx (12.3.63)

as ε→ 0. Combining (12.3.61)-(12.3.63), letting δ → 0, we get with (12.3.60) that

r
−1−n

2
ε µ̂

1−n
2

ε ‖uε‖1 →
∫

B
Hdx =

ωn−1

2n(n+ 2)
An (12.3.64)

as ε→ 0. Then, combining (12.3.48) and (12.3.64),

B̂εr
n+2
ε → 2n(n+ 2)

ωn−1

(12.3.65)

as ε→ 0.

Going on with the asymptotic study of ûε, we prove sharp asymptotic estimates in the
following subsection.
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12.3.4 Strong Estimates.2

We claim that for any δ > 0 there exists C(δ) > 1 such that for ε > 0 small and any x ∈ B0(δ),

1

C(δ)





µ̂ε

µ̂2
ε + ω

2/n
n

4
|x|2





n−2
2

≤ ûε(x) ≤ C(δ)





µ̂ε

µ̂2
ε + ω

2/n
n

4
|x|2





n−2
2

(12.3.66)

with the property that C(δ) → 1 as δ → 0. Let us define Uε by

Uε(x) =





µ̂ε

µ̂2
ε + ω

2/n
n

4
|x|2





n−2
2

and let (yε) be a sequence in B. Suppose that yε → y0 as ε → 0, y0 6= 0. Then, thanks to
(12.3.49) and (12.3.60),

ûε(yε)

Uε(yε)
= 1 + 0(|yε|n−2)

In order to prove (12.3.66) it thus suffices to proves that if yε → 0 as ε→ 0, then

lim
ε→0

ûε(yε)

Uε(yε)
= 1 (12.3.67)

If |yε| ≤ Cµ̂ε, (12.3.67) follows from (12.3.15). In order to prove (12.3.67), and so (12.3.66), we

are therefore left with the case where yε → 0 and |yε|
µ̂ε

→ +∞ as ε → 0. Let v̂ε be given by

v̂ε(x) = |yε|
n
2
−1ûε(|yε|x)

and let
ĥε(x) = ĝε(|yε|x) , σε(x) = Σ̂ε(|yε|x)

It is easily seen that

∆ĥε
v̂ε + B̂ε(rε|yε|)

n+2
2 ‖uε‖1σε =

1 − ε

Kn
v̂2⋆−1

ε

and that ĥε → ξ in C1
loc(IR

n) as ε → 0. We set

ŵε(x) =

(

µ̂ε

|yε|

)1−n
2

v̂ε

Then,

∆ĥε
ŵε + |yε|nB̂εr

n+2
2

ε µ̂
1−n

2
ε ‖uε‖1σε =

1 − ε

Kn

(

µ̂ε

|yε|

)2

ŵ2⋆−1
ε (12.3.68)

Thanks to (12.3.15) and (12.3.37),

(

µ̂ε

|yε|

)n−2

ŵε

(

µ̂ε

|yε|
x

)

→ ũ(x) (12.3.69)
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in C0
loc(IR

n) as ε→ 0, and
|x|n−2ŵε(x) ≤ C (12.3.70)

Thanks to (12.3.64) and (12.3.65), we also have that

|yε|nB̂εr
n+2

2
ε µ̂

1−n
2

ε ‖uε‖1 → 0 (12.3.71)

as ε→ 0. Noting that by (12.3.70), ŵε is bounded in any compact subset of IRn\{0}, it follows
from standard elliptic theory, from (12.3.68), and (12.3.71), that ŵε → Ψ in C1

loc(IR
n\{0}),

where Ψ is a solution of ∆Ψ = 0 in IRn\{0}. We let δ > 0 small, and we integrate (12.3.68)
over B0(δ). Then

−
∫

∂B0(δ)
∂νŵεdσĥε

+ |yε|nB̂εr
n+2

2
ε µ̂

1−n
2

ε ‖uε‖1

∫

B0(δ)
σεdvĥε

=
1 − ε

Kn

(

µ̂ε

|yε|

)2
∫

B0(δ)
ŵ2⋆−1

ε dvĥε

(12.3.72)

It is easily seen that

(

µ̂ε

|yε|

)2
∫

B0(δ)
ŵ2⋆−1

ε dvĥε
=
∫

B0(δ
|yε|
µ̂ε

)





(

µ̂ε

|yε|

)n−2

ŵε

(

µ̂ε

|yε|
x

)





2⋆−1

dvg̃ε

Thanks to (12.3.69) and (12.3.70) we then get that

(

µ̂ε

|yε|

)2
∫

B0(δ)
ŵ2⋆−1

ε dvĥε
→
∫

IR
n
ũ2⋆−1dx (12.3.73)

as ε→ 0. Thanks to (12.3.71) we have that

|yε|nB̂εr
n+2

2
ε µ̂

1−n
2

ε ‖uε‖1

∫

B0(δ)
σεdvĥε

→ 0 (12.3.74)

as ε→ 0, and since ĥε → ξ as ε→ 0, we also have that
∫

∂B0(δ)
∂νŵεdσĥε

→
∫

∂B0(δ)
∂νΨdσξ (12.3.75)

as ε→ 0. Combining (12.3.72)-(12.3.75), it follows that

∫

∂B0(δ)
∂νΨdσξ +

1

Kn

∫

IR
n
ũ2⋆−1dx = 0

and thus that ∫

∂B0(δ)
∂νΨdσξ +

ωn−1

n
An = 0 (12.3.76)

As in subsection 12.1, (12.3.70) and (12.3.76) imply that

Ψ(x) =
An

n(n− 2)|x|n−2
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In particular, taking x = yε/|yε|, we get that for any sequence (yε) such that yε → 0 and
|yε|
µ̂ε

→ +∞ as ε→ 0,

|yε|n−2µ̂
1−n

2
ε ûε(yε) →

An

n(n− 2)
= 2n−2ω

2
n
−1

n (12.3.77)

as ε→ 0. This proves (12.3.67), and thus also (12.3.66).

From now on, we let B2 be the Euclidean ball B0(2), and let η ∈ C∞
c (B2) be a radially

symmetrical function such that η = 1 in B. We want to estimate

I =
∫

B2

(ηûε)
2⋆

dx and J =
∫

B2

|∇(ηûε)|2dx (12.3.78)

We start with I.

12.3.5 An expansion for
∫

B2
(ηûε)

2⋆
dx as ε → 0

We write that
∫

B2

(ηûε)
2⋆

dx =
∫

B
û2⋆

ε dx+
∫

B2\B
(ηûε)

2⋆

dx

=
∫

B
û2⋆

ε (1 −
√

|ĝε|)dx+
∫

B
û2⋆

ε dvĝε +
∫

B2\B
(ηûε)

2⋆

dx

where |ĝε| is the determinant of the components of ĝε in Euclidean coordinates. Thanks to the
Cartan expansion of a metric in geodesic normal coordinates, we can write that

√

|ĝε| = 1 − r2
ε

6
Rij(xε)x

ixj + r3
εO(|x|3)

where the Rij’s are the components of the Ricci curvature of g in the exponential chart at xε.
Then,

∫

B2

(ηûε)
2⋆

dx =
∫

B
û2⋆

ε dvĝε +
r2
ε

6
Rij(xε)

∫

B
û2⋆

ε x
ixjdx

+r3
εO

(∫

B
|x|3û2⋆

ε dx
)

+
∫

B2\B
(ηûε)

2⋆

dx

(12.3.79)

Thanks to (12.3.46),
∫

B2\B
(ηûε)

2⋆

dx = O(µ̂n
ε ) = o(µ̂n−2

ε ) (12.3.80)

Similarly, it is easily seen that
∫

B
û2⋆

ε dvĝε = 1 + o(µ̂n−2
ε ) (12.3.81)

By (12.3.15),

µ̂
n
2
−1

ε ûε(µ̂εx) → ũ(x) (12.3.82)

in C1
loc(IR

n), where ũ is the fundamental solution given by (12.3.16). Combining this estimate
with (12.3.46), it follows that

r3
ε

∫

B
|x|3û2⋆

ε dx = o(r2
ε µ̂

2
ε) (12.3.83)
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and that
r2
ε

6
Rij(xε)

∫

B
û2⋆

ε x
ixjdx =

Sg(x0)

6n

(∫

IR
n
|x|2ũ2⋆

dx
)

r2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε)

Noting that
∫

IR
n
|x|2ũ2⋆

dx =
4n

(n− 2)ω
2/n
n

= n2Kn

we get that
r2
ε

6
Rij(xε)

∫

B
û2⋆

ε x
ixjdx =

nKn

6
Sg(x0)r

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε) (12.3.84)

Combining (12.3.79)-(12.3.81), (12.3.83), and (12.3.84), it follows that

I = 1 +
nKn

6
Sg(x0)r

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε) + o(µ̂n−2

ε ) (12.3.85)

This is the expansion we were looking for.

We now compute an expansion for J . This is the subject of the following subsection.

12.3.6 An expansion for
∫

B2
|∇(ηûε)|2dx as ε → 0

We write that
∫

B2

|∇(ηûε)|2ξdx =
∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx

+
∫

B2

|∇(ηûε)|2ĝε
(1 −

√

|ĝε|)dx+
∫

B2

|∇(ηûε)|2ĝε
dvĝε

(12.3.86)

where the subscripts ξ and ĝε refer to the metric with respect to which the expression has to be
understood. Thanks to (12.3.43), namely the equation satisfied by the ûε’s, we can write that

∫

B2

|∇(ηûε)|2dvĝε =
∫

B2

|∇η|2û2
εdvĝε +

∫

B2

η2ûε∆ĝεûεdvĝε

=
1 − ε

Kn

∫

B2

η2û2⋆

ε dvĝε − B̂ε‖uε‖1r
n
2
+1

ε

∫

B2

η2ûεdvĝε +
∫

B2

|∇η|2û2
εdvĝε

(12.3.87)

Thanks to (12.3.46) and (12.3.59),

∫

B2

|∇η|2û2
εdvĝε = O

(

∫

B2\B
Σ̂εû

2
εdvĝε

)

= µ̂n−2
ε O

(

∫

B2\B
Σ̂εdvĝε

)

= o
(

µ̂n−2
ε

)

(12.3.88)

Independently, we can write that
∫

B2

η2û2⋆

ε dvĝε =
∫

B
û2⋆

ε dvĝε +
∫

B2\B
η2û2⋆

ε dvĝε = 1 + o(µ̂n−2
ε ) (12.3.89)

At last, we write that

B̂ε‖uε‖1r
n
2
+1

ε

∫

B2

η2ûεdvĝε

= µ̂n−2
ε

[

r
−1−n

2
ε µ̂

1−n
2

ε ‖uε‖1

]

(

B̂εr
n+2
ε

)

µ̂
1−n

2
ε

∫

B2

η2ûεdvĝε

(12.3.90)
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By (12.3.46),

lim
δ→0

lim
ε→0

µ̂
1−n

2
ε

∫

B0(δ)
ûεdvĝε = 0

With such a relation, it easily follows from (12.3.49) and (12.3.60) that

lim
ε→0

µ̂
1−n

2
ε

∫

B2

η2ûεdvĝε =
∫

B
Hdx =

ωn−1

2n(n + 2)
An (12.3.91)

By (12.3.64), (12.3.65), and (12.3.91), coming back to (12.3.90), we then get that

B̂ε‖uε‖1r
n
2
+1

ε

∫

B2

η2ûεdvĝε =
ωn−1

2n(n+ 2)
A2

nµ̂
n−2
ε + o(µ̂n−2

ε ) (12.3.92)

Finally, thanks to (12.3.88), (12.3.89), and (12.3.92), we get with (12.3.87) that

∫

B2

|∇(ηûε)|2dvĝε =
1 − ε

Kn

− ωn−1

2n(n+ 2)
A2

nµ̂
n−2
ε + o(µ̂n−2

ε ) (12.3.93)

Concerning the first term in the RHS of (12.3.86), we claim that
∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx = o(r2

ε µ̂
2
ε) (12.3.94)

if n ≥ 5, and that
∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx = o(r2

εµ̂
2
ε| ln µ̂ε|) (12.3.95)

if n = 4. We assume first that n ≥ 5. Thanks to the Cartan expansion of a metric in geodesic
normal coordinates, we can write that

ĝij
ε = δij − r2

ε

3
Ri

αβ
j(xε)x

αxβ + r3
εO(|x|3)

where the Rijkl’s are the components of the Riemann curvature tensor of g in the exponential
chart at xε, and an index is raised with the metric. Let ũ be given by (12.3.16). Since η and ũ
are radially symmetrical,

Ri
αβ

j(xε)∂i (η(µ̂εx)ũ(x)) ∂j (η(µ̂εx)ũ(x))x
αxβ = 0 (12.3.96)

Let R > 0. Thanks to (12.3.82), writing that
∫

B2
=
∫

B0(Rµ̂ε) +
∫

B2\B0(Rµ̂ε), it is easily seen with
(12.3.96) that that for any R > 0,

∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx

≤ Cr2
ε

∫

B2\B0(Rµ̂ε)
|x|2|∇(ηûε)|2ĝε

dvĝε + o(r2
ε µ̂

2
ε)

(12.3.97)

where C > 0 does not depend on ε and R. We write that

1

2

∫

B2\B0(Rµ̂ε)
|x|2|∇(ηûε)|2ĝε

dvĝε

≤
∫

B2\B0(Rµ̂ε)
|x|2|∇η|2ĝε

û2
εdvĝε +

∫

B2\B0(Rµ̂ε)
|x|2η2|∇ûε|2ĝε

dvĝε

(12.3.98)
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As in (12.3.88),
∫

B2\B0(Rµ̂ε)
|x|2|∇η|2ĝε

û2
εdvĝε = o(µ̂n−2

ε ) (12.3.99)

Independently, thanks to (12.3.82),

∫

∂B0(Rµ̂ε)
|x|2η2ûε|∂ν ûε|dσĝε = εRµ̂

2
ε and

∫

∂B0(Rµ̂ε)
|x|û2

εdσĝε = εRµ̂
2
ε

where εR is such that
lim

R→+∞
lim
ε→0

εR = 0

Hence,

∫

B2\B0(Rµ̂ε)
|x|2η2|∇ûε|2ĝε

dvĝε =
∫

B2\B0(Rµ̂ε)
|x|2η2ûε∆ĝεûεdvĝε

−1

2

∫

B2\B0(Rµ̂ε)
∆ĝε(|x|2η2)û2

εdvĝε + εRµ̂
2
ε

(12.3.100)

Thanks to (12.3.43), namely the equation satisfied by the ûε’s,

∫

B2\B0(Rµ̂ε)
|x|2η2ûε∆ĝεûεdvĝε ≤ C

∫

B2\B0(Rµ̂ε)
|x|2û2⋆

ε dx

= Cµ̂2
ε

∫

B0(
2

µ̂ε
)\B0(R)

|x|2
(

µ̂
n
2
−1

ε ûε(µ̂εx)
)2⋆

dx

so that, by (12.3.46),
∫

B2\B0(Rµ̂ε)
|x|2η2ûε∆ĝε ûεdvĝε = εRµ̂

2
ε (12.3.101)

where εR is as above. Similarly,

∣

∣

∣

∣

∣

∫

B2\B0(Rµ̂ε)
∆ĝε(|x|2η2)û2

εdvĝε

∣

∣

∣

∣

∣

≤ C
∫

B2\B0(Rµ̂ε)
û2

εdx

= Cµ̂2
ε

∫

B0( 2
µ̂ε

)\B0(R)

(

µ̂
n
2
−1

ε ûε(µ̂εx)
)2

dx

and still thanks to (12.3.46), since n ≥ 5, we get that

∫

B2\B0(Rµ̂ε)
∆ĝε(|x|2η2)û2

εdvĝε = εRµ̂
2
ε (12.3.102)

where εR is as above. Combining (12.3.97)-(12.3.102) we get that

∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx = εRr

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε)

and since R is arbitrary, this proves (12.3.94). In order to prove (12.3.95), there we have n = 4,
we need to be more subtle. Still thanks to the Cartan expansion of a metric in geodesic normal

100



coordinates, we can write that
∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx

≤ Cr2
ε

∫

B2

Ri
αβ

j(xε)∂i(ηûε)∂j(ηûε)x
αxβdvĝε

+r2
εo
(∫

B2

|x|2|∇(ηûε)|2ĝε
dvĝε

)

(12.3.103)

where C > 0 does not depend on ε. Similar developments to the ones we made when n ≥ 5
give that

∫

B2

|x|2|∇(ηûε)|2ĝε
dvĝε = O

(

µ̂2
ε| ln µ̂ε|

)

(12.3.104)

when n = 4. Independently, thanks to (12.3.96),

∫

B2

Ri
αβ

j(xε)∂i(ηûε)∂j(ηûε)x
αxβdvĝε

≤
∫

B2\B0(Rµ̂ε)
Ri

αβ
j(xε)∂i(ηûε)∂j(ηûε)x

αxβdvĝε + o(µ̂2
ε)

(12.3.105)

where R > 0 is fixed. Combining (12.3.103)-(12.3.105), we then get that for R > 0,

∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx

≤ Cr2
ε

∫

B2\B0(Rµ̂ε)
Ri

αβ
j(xε)∂i(ηûε)∂j(ηûε)x

αxβdvĝε + o(r2
ε µ̂

2
ε| ln µ̂ε|)

(12.3.106)

Let K > 0 be an upper bound for the sectional curvature of g. Then,

∫

B2\B0(Rµ̂ε)
Ri

αβ
j(xε)∂i(ηûε)∂j(ηûε)x

αxβdvĝε

≤ K
∫

B2\B0(Rµ̂ε)

(

|∇(|x|ηûε)|2ĝε
− (∇(|x|ηûε), ν)

2
ĝε

)

dvĝε

+o
(∫

B2

|x|2|∇(ηûε)|2ĝε
dvĝε

)

where ν = x
|x| , and thanks to (12.3.104), we get that

∫

B2\B0(Rµ̂ε)
Ri

αβ
j(xε)∂i(ηûε)∂j(ηûε)x

αxβdvĝε

≤ K
∫

B2\B0(Rµ̂ε)

(

|∇(|x|ηûε)|2ĝε
− (∇(|x|ηûε), ν)

2
ĝε

)

dvĝε + o(r2
ε µ̂

2
ε| ln µ̂ε|)

(12.3.107)

It is easily seen that

∫

B2\B0(Rµ̂ε)

(

|∇(|x|ηûε)|2ĝε
− (∇(|x|ηûε), ν)

2
ĝε

)

dvĝε

=
∫

B2\B0(Rµ̂ε)
η2
(

|∇(|x|ûε)|2ĝε
− (∇(|x|ûε), ν)

2
ĝε

)

dvĝε + o(r2
ε µ̂

2
ε)

(12.3.108)

101



Combining (12.3.106)-(12.3.108), it follows that
∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx

≤ Cr2
ε

∫

B2\B0(Rµ̂ε)
η2
(

|∇(|x|ûε)|2ĝε
− (∇(|x|ûε), ν)

2
ĝε

)

dvĝε + o(r2
ε µ̂

2
ε| ln µ̂ε|)

(12.3.109)

Letting ũε be as in (12.3.12), ũε is given by

ũε(x) = µ̂
n
2
−1

ε ûε(µ̂εx)

we have that
∫

B2\B0(Rµ̂ε)
η2
(

|∇(|x|ûε)|2ĝε
− (∇(|x|ûε), ν)

2
ĝε

)

dvĝε

= µ̂2
ε

∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2
(

|∇(|x|ũε)|2g̃ε
− (∇(|x|ũε), ν)

2
g̃ε

)

dvg̃ε

(12.3.110)

We write now that
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2
(

|∇(|x|ũε)|2g̃ε
− (∇(|x|ũε), ν)

2
g̃ε

)

dvg̃ε

≤ C
∫

∂B0(R)
|∇(|x|2ũ2

ε)|ξdσξ +
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2|x|ũε∆g̃ε(|x|ũε)dvg̃ε

−
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2(∇(|x|ũε), ν)
2
g̃ε
dvg̃ε + C

∫

B0( 2
µ̂ε

)\B0( 1
µ̂ε

)
ũ2

εdvg̃ε

and since

∆g̃ε(|x|ũε) = |x|∆g̃εũε + ũε∆g̃ε|x| −
2

|x|(∇ũε, x)g̃ε

we get that
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2
(

|∇(|x|ũε)|2g̃ε
− (∇(|x|ũε), ν)

2
g̃ε

)

dvg̃ε

≤ C
∫

∂B0(R)
|∇(|x|2ũ2

ε)|ξdσξ +
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2|x|2ũε∆g̃ε ũεdvg̃ε

+
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2|x|ũ2
ε∆g̃ε(|x|)dvg̃ε + C

∫

B0( 2
µ̂ε

)\B0( 1
µ̂ε

)
ũ2

εdvg̃ε

−2
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2ũε(∇ũε, x)g̃εdvg̃ε

−
∫

B0(
2

µ̂ε
)\B0(R)

η(µ̂εx)
2 ((∇ũε, x)g̃ε + ũε)

2 dvg̃ε

Noting that
|x|∆g̃ε(|x|) ≤ −(n− 1) + Cµ2

ε|x|2

and since

∆g̃εũε + B̂εµ
n+2

2
ε ‖uε‖1Σ̃ε =

1 − ε

Kn
ũ2⋆−1

ε
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it follows from the above computations that
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2
(

|∇(|x|ũε)|2g̃ε
− (∇(|x|ũε), ν)

2
g̃ε

)

dvg̃ε

≤ C
∫

∂B0(R)
|∇(|x|2ũ2

ε)|ξdσξ + C
∫

B0( 2
µ̂ε

)\B0(R)
|x|2ũ2⋆

ε dvg̃ε

+Cr2
ε

∫

B0( 2
µ̂ε

)\B0(R)
ũ2

εdvg̃ε + C
∫

B0( 2
µ̂ε

)\B0( 1
µ̂ε

)
ũ2

εdvg̃ε

−(n− 4)
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2ũ2
εdvg̃ε

−
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2 ((∇ũε, x)g̃ε + 2ũε)
2 dvg̃ε

and hence that
∫

B0( 2
µ̂ε

)\B0(R)
η(µ̂εx)

2
(

|∇(|x|ũε)|2g̃ε
− (∇(|x|ũε), ν)

2
g̃ε

)

dvg̃ε

≤ C
∫

∂B0(R)
|∇(|x|2ũ2

ε)|ξdσξ + C
∫

B0( 2
µ̂ε

)\B0(R)
|x|2ũ2⋆

ε dvg̃ε

+Cr2
ε

∫

B0( 2
µ̂ε

)\B0(R)
ũ2

εdvg̃ε + C
∫

B0(
2

µ̂ε
)\B0( 1

µ̂ε
)
ũ2

εdvg̃ε

(12.3.111)

By (12.3.82),
∫

∂B0(R)
|∇(|x|2ũ2

ε)|ξdσξ ≤ C (12.3.112)

while by (12.3.43),
∫

B0( 2
µ̂ε

)\B0(R)
|x|2ũ2⋆

ε dvg̃ε ≤ C

∫

B0( 2
µ̂ε

)\B0(R)
ũ2

εdvg̃ε = O(| ln µ̂ε|)
∫

B0( 2
µ̂ε

)\B0( 1
µ̂ε

)
ũ2

εdvg̃ε ≤ C

(12.3.113)

when n = 4. Combining (12.3.109)-(12.3.113), it follows that when n = 4,
∫

B2

(δij − ĝij
ε )∂i(ηûε)∂j(ηûε)dx = o(r2

εµ̂
2
ε| ln µ̂ε|)

and this proves (12.3.95). Still when estimating J , we now have to deal with the second term
in the RHS of (12.3.86). We claim here that

∫

B2

|∇(ηûε)|2ĝε
(1 −

√

|ĝε|)dx =
(n− 2)(n+ 2)

6(n− 4)
Sg(x0)r

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε) (12.3.114)

when n ≥ 5, and that

∫

B2

|∇(ηûε)|2ĝε
(1 −

√

|ĝε|)dx =
8ω3

3ω4
Sg(x0)r

2
ε µ̂

2
ε| ln µ̂ε| + o(r2

ε µ̂
2
ε| ln µ̂ε|) (12.3.115)
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when n = 4. In order to prove this claim, we write that

√

|ĝε| = 1 − r2
ε

6
Rij(xε)x

ixj + r3
εO(|x|3)

where the Rij’s are the components of the Ricci curvature of g in the exponential chart at xε.
Then,

∫

B2

|∇(ηûε)|2ĝε
(1 −

√

|ĝε|)dx

=
r2
ε

6
Rij(xε)

∫

B2

|∇(ηûε)|2ĝε
xixjdvĝε + r3

εO
(∫

B2

|x|2|∇(ηûε)|2ĝε
dvĝε

)
(12.3.116)

As above,
∫

B2

|x|2|∇(ηûε)|2ĝε
dvĝε = O(µ̂2

ε| ln µ̂ε|) (12.3.117)

when n = 4, and
∫

B2

|x|2|∇(ηûε)|2ĝε
dvĝε = O(µ̂2

ε) (12.3.118)

when n ≥ 5. Similarly, it is easily seen that

Rij(xε)
∫

B2

|∇(ηûε)|2ĝε
xixjdvĝε

= Rij(xε)
∫

B2

η2|∇ûε|2ĝε
xixjdvĝε + o(µ̂2

ε)
(12.3.119)

Then,

Rij(xε)
∫

B2

η2|∇ûε|2ĝε
xixjdvĝε

= Rij(xε)
∫

B2

η2ûε∆ĝε ûεx
ixjdvĝε −

1

2

∫

B2

∆ĝε(η
2Rij(xε)x

ixj)û2
εdvĝε

(12.3.120)

By (12.3.43),

Rij(xε)
∫

B2

η2ûε∆ĝεûεx
ixjdvĝε

=
1 − ε

Kn
Rij(xε)

∫

B2

η2û2⋆

ε x
ixjdvĝε

−B̂ε‖uε‖1r
n
2
+1

ε Rij(xε)
∫

B2

η2Σ̂εûεx
ixjdvĝε

As when getting (12.3.92),

B̂ε‖uε‖1r
n
2
+1

ε Rij(xε)
∫

B2

η2Σ̂εûεx
ixjdvĝε = o(µ̂2

ε)

while, thanks to (12.3.46) and (12.3.82),

Rij(xε)
∫

B2

η2û2⋆

ε x
ixjdvĝε =

Sg(x0)

n

∫

IR
n
|x|2ũ2⋆

dx+ o(µ̂2
ε)
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Noting that
∫

IR
n
|x|2ũ2⋆

dx = n2Kn

it follows that
Rij(xε)

∫

B2

η2ûε∆ĝεûεx
ixjdvĝε = nKnSg(x0)µ̂

2
ε + o(µ̂2

ε) (12.3.121)

Independently,
∫

B2

∆ĝε(η
2Rij(xε)x

ixj)û2
εdvĝε = −2Sg(x0) (1 + o(1))

∫

B
û2

εdx+ o(µ̂2
ε)

When n ≥ 5, we get with (12.3.46) and (12.3.82) that
∫

B
û2

εdx = µ̂2
ε

∫

IR
n
ũ2dx+ o(µ̂2

ε)

Since, see (12.1.41),
∫

IR
n
ũ2dx =

4(n− 1)

n− 4

it follows that when n ≥ 5,

∫

B2

∆ĝε(η
2Rij(xε)x

ixj)û2
εdvĝε = −8(n− 1)

n− 4
Sg(x0)µ̂

2
ε + o(µ̂2

ε) (12.3.122)

Combining (12.3.116) and (12.3.118)-(12.3.122), we get that when n ≥ 5,

∫

B2

|∇(ηûε)|2ĝε
(1 −

√

|ĝε|)dx =
n2 − 4

6(n− 4)
Sg(x0)r

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε)

and this proves (12.3.114). When n = 4, we use (12.3.66). As in (12.1.55), it follows from
(12.3.66) that

∫

B
û2

εdx =
16ω3

ω4
µ̂2

ε| ln µ̂ε| + o
(

µ̂2
ε| ln µ̂ε|

)

(12.3.123)

Combining (12.3.116), (12.3.117), (12.3.119)-(12.3.121), and (12.3.123), we get that when n = 4,
∫

B2

|∇(ηûε)|2ĝε
(1 −

√

|ĝε|)dx =
8ω3

3ω4
Sg(x0)r

2
ε µ̂

2
ε| ln µ̂ε| + o(r2

ε µ̂
2
ε| ln µ̂ε|)

This proves (12.3.115). Summarizing, it follows from (12.3.86), (12.3.93)-(12.3.95), (12.3.114),
and (12.3.115) that

J =
1 − ε

Kn

− ωn−1

2n(n + 2)
A2

nµ̂
n−2
ε

+
n2 − 4

6(n− 4)
Sg(x0)r

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε) + o(µ̂n−2

ε )

(12.3.124)

when n ≥ 5, and that

J =
1 − ε

Kn

− ωn−1

2n(n+ 2)
A2

nµ̂
n−2
ε

+
8ω3

3ω4
Sg(x0)r

2
ε µ̂

2
ε| ln µ̂ε| + o(r2

ε µ̂
2
ε| ln µ̂ε|) + o(µ̂n−2

ε )

(12.3.125)
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when n = 4.

Now the proof of (12.3.4) and (12.3.5) proceeds as follows. We write that

(
∫

B2

(ηûε)
2⋆

dx
) 2

2⋆

≤ Kn

∫

B2

|∇(ηûε)|2dx

namely that I2/2⋆ ≤ KnJ . Thanks to (12.3.85), (12.3.124), and (12.3.125), we then get that

ε+
ωn−1

2n(n+ 2)
A2

nKnµ̂
n−2
ε

≤ n− 2

n− 4
KnSg(x0)r

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε) + o(µ̂n−2

ε )

(12.3.126)

when n ≥ 5, and

ε+
ω3

48
K2

4A
2
4µ̂

2
ε

≤ 8ω3

3ω4
K2

4Sg(x0)r
2
ε µ̂

2
ε| ln µ̂ε| + o(r2

ε µ̂
2
ε| ln µ̂ε|) + o(µ̂2

ε)
(12.3.127)

when n = 4. A direct consequence of (12.3.126) and (12.3.127) is that Sg(x0) ≥ 0. We claim
that Sg(x0) > 0. Let us assume first that n ≥ 5. Writing that

(

B̂εr
n+2
ε

) 2
n+2 =

(

ε
(n−4)(n+2)

2(n−2) B̂ε

) 2
n+2

ε
4−n
n−2 r2

ε

it follows from (12.3.65) and (12.2.3) that

lim sup
ε→0

ε
4−n
n−2 r2

ε < +∞ (12.3.128)

Thanks to (12.3.126), assuming that Sg(x0) = 0, we then get with (12.3.128) that

εµ̂2−n
ε = o

(

r2
ε µ̂

4−n
ε

)

= o
(

(εµ̂2−n
ε )

n−4
n−2

)

Hence, εµ̂2−n
ε → 0 as ε→ 0, so that

r2
ε µ̂

4−n
ε = o

(

r2
εε

4−n
n−2

)

and r2
ε µ̂

4−n
ε → 0 as ε → 0 thanks to (12.3.128). Coming back to (12.3.126), we get a contra-

diction. This proves the claim that Sg(x0) > 0 in the case n ≥ 5. When n = 4, (12.3.65) and
(12.2.2) give that

lim sup
ε→0

r2
ε | ln ε| < +∞ (12.3.129)

Combining (12.3.127) and (12.3.129), we can write that

ε| ln ε| ≤ Cµ̂2
ε| ln µ̂ε|

and this implies that
1

| ln ε| = O

(

1

| ln µ̂ε|

)

(12.3.130)
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Coming back to (12.3.127), assuming that Sg(x0) = 0, we get that

ω3

48
K2

4A
2
4 + o(1) ≤ o

(

| ln µ̂ε|
| ln ε|

)

a contradiction thanks to (12.3.130). This proves the claim that Sg(x0) > 0 in the case n = 4.
Then it follows from (12.3.126) and (12.3.127) that

lim inf
ε→0

r2
ε µ̂

4−n
ε > 0 (12.3.131)

when n ≥ 5, and
lim inf

ε→0
r2
ε | ln µ̂ε| > 0 (12.3.132)

when n = 4. In particular, µ̂n−2
ε = O(r2

εµ̂
2
ε) when n ≥ 5, and µ̂2

ε = O(r2
ε µ̂

2
ε| ln µ̂ε|) when n = 4.

Coming back to (12.3.126) and (12.3.127) we then get that

ε = O(r2
εµ̂

2
ε) when n ≥ 5 and ε = O(r2

ε µ̂
2
ε| ln µ̂ε|) when n = 4 (12.3.133)

We now consider the sharp inequality of subsection 12.1. We choose α to be given by the
equation α = n−2

4(n−1)
Sg(x0), and apply this inequality to the function

ϕε(x) = η(
x

rε
)uε

(

expxε
(x)
)

where η is as above. The change of variable x = rεy then gives that

1 − ε

Kn

(∫

B2

(ηûε)
2⋆

dx
) 2

2⋆

≤
∫

B2

|∇(ηûε)|2dx−
n− 2

4(n− 1)
Sg(x0)r

2
ε

∫

B2

η2û2
εdx

+Bεr
n+2
ε

(∫

B2

ηûεdx
)2

(12.3.134)

Thanks to (12.3.85)-(12.3.89), (12.3.94), (12.3.95), (12.3.114), and (12.3.115), it follows from
(12.3.134) that

B̂ε‖uε‖1r
n
2
+1

ε

∫

B2

η2ûεdvĝε − Bε

(∫

B2

ηûεdx
)2

rn+2
ε

≤ n− 2

n− 4
Sg(x0)r

2
ε µ̂

2
ε −

n− 2

4(n− 1)
Sg(x0)r

2
ε

∫

B2

η2û2
εdx

+o(r2
εµ̂

2
ε) + o(µ̂n−2

ε )

(12.3.135)

when n ≥ 5, and

B̂ε‖uε‖1r
n
2
+1

ε

∫

B2

η2ûεdvĝε − Bε

(
∫

B2

ηûεdx
)2

rn+2
ε

≤ 8ω3

3ω4
Sg(x0)r

2
ε µ̂

2
ε| ln µ̂ε| −

n− 2

4(n− 1)
Sg(x0)r

2
ε

∫

B2

η2û2
εdx

+o(r2
ε µ̂

2
ε| ln µ̂ε|) + o(µ̂n−2

ε )

(12.3.136)
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when n = 4. We have already seen, see (12.3.122) and (12.3.123), that

∫

B2

η2û2
εdx =

4(n− 1)

n− 4
µ̂2

ε + o(µ̂2
ε)

when n ≥ 5, and
∫

B2

η2û2
εdx =

16ω3

ω4
µ̂2

ε| ln µ̂ε| + o(µ̂2
ε| ln µ̂ε|)

when n = 4. Hence,

n− 2

4(n− 1)
Sg(x0)r

2
ε

∫

B2

η2û2
εdx =

n− 2

n− 4
Sg(x0)r

2
ε µ̂

2
ε + o(r2

ε µ̂
2
ε) (12.3.137)

when n ≥ 5, and
n− 2

4(n− 1)
Sg(x0)r

2
ε

∫

B2

η2û2
εdx

=
8ω3

3ω4
Sg(x0)r

2
ε µ̂

2
ε| ln µ̂ε| + o(r2

ε µ̂
2
ε| ln µ̂ε|)

(12.3.138)

when n = 4. Independently, similar computations to the ones we made to get (12.3.64) give
that

r
n
2
+1

ε ‖uε‖1

∫

B2

η2ûεdvĝε =
(∫

B
Hdx

)2

rn+2
ε µ̂n−2

ε + o(rn+2
ε µ̂n−2

ε ) (12.3.139)

and that
∫

B2

ηûεdx =
(∫

B
Hdx

)

µ̂
n
2
−1

ε + o(µ̂
n
2
−1

ε ) (12.3.140)

We have already seen that
∫

BHdx > 0. We also have that µ̂n−2
ε = O(r2

εµ̂
2
ε) when n ≥ 5, and

µ̂2
ε = O(r2

ε µ̂
2
ε| ln µ̂ε|) when n = 4. Combining (12.3.135)-(12.3.140) we then get that

B̂ε − Bε + o(Bε) ≤ o(r−n
ε µ̂4−n

ε ) (12.3.141)

when n ≥ 5, and
B̂ε − Bε + o(Bε) ≤ o(r−4

ε | ln µ̂ε|) (12.3.142)

when n = 4. It easily follows from (12.3.131) and (12.3.133) that

r−n
ε µ̂4−n

ε ε
(n−4)(n+2)

2(n−2) = O(1) (12.3.143)

when n ≥ 5, and it easily follows from (12.3.132) and (12.3.133) that

r−4
ε | ln µ̂ε|| ln ε|−3 = O(1) (12.3.144)

Combining (12.3.140)-(12.3.144), we then get with (12.1.4) and (12.1.5) that

lim sup
ε→0

B̂εε
(n−4)(n+2)

2(n−2) ≤ CnSg(x0)
n+2

2 (12.3.145)

when n ≥ 5, and

lim sup
ε→0

B̂ε

| ln ε|3 ≤ 1

2304ω3
Sg(x0)

3 (12.3.146)
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when n = 4, where

Cn =
2n(n + 2)ω

2+ 4
n

n

ω
2n

n−2

n−1 (4n−3n(n− 2)(n− 4))
n+2
n−2

Thanks to the results of subsection 12.2, namely (12.2.2) and (12.2.3), it follows from (12.3.145)
and (12.3.146) that

Sg(x0) = max
x∈M

Sg(x) (12.3.147)

Combining (12.3.145)-(12.3.147) we then get that (12.3.3) and (12.3.4) are proved.

It is easily seen that the second part of Theorem 4.4 follows from the results of subsections
12.2 and 12.3. Combining (12.2.2)-(12.2.3) and (12.3.3)-(12.3.4), we indeed do get that

lim
ε→0

B̂ε

| ln ε|3 =
1

2304ω3

(

max
x∈M

Sg

)3

when n = 4, and

lim
ε→0

B̂εε
(n−4)(n+2)

2(n−2) = Cn

(

max
x∈M

Sg

)
n+2

2

when n ≥ 5. Thanks to (12.3.2), this ends the proof of the second part of Theorem 4.4.

Appendix

We prove Theorem 4.3 in this appendix, following Druet [16], private communication. We
let (M, g) be a smooth compact Riemannian manifold of dimension n = 4 or n = 5, and of
nonpositive scalar curvature. We let also B̂ε be the smallest B such that for any u ∈ H2

1(M),

1 − ε

Kn

‖u‖2
2⋆ ≤ ‖∇u‖2

2 +B‖u‖2
1

In order to prove Theorem 4.3, it suffices to prove that B̂ε is bounded as ε → 0. We proceed
here by contradiction, and assume that B̂ε → +∞ as ε → 0. The analysis of the preceding
section can then be applied. In particular, the following holds. For any ε > 0, there exists
uε ∈ C1,β(M), 0 < β < 1, uε ≥ 0, such that

∆guε + B̂ε‖uε‖1Σε =
1 − ε

Kn
u2⋆−1

ε (A1)

and ∫

M
u2⋆

ε dvg = 1 (A2)

where ∆g = −divg(∇) is the Riemannian Laplacian, and Σε ∈ L∞(M), 0 ≤ Σε ≤ 1, is such
that Σεuε = uε. We let xε be a point where uε is maximum, and set

µ
1−n

2
ε = ‖uε‖∞ = uε(xε) (A3)
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Then µε → 0 as ε→ 0, and uε → 0 in C0
loc(M\{x0}) as ε→ 0, where x0 is the limit of the xε’s

as ε→ 0. Moreover,

lim
ε→0

µ
n
2
−1

ε uε

(

expxε
(µεx)

)

= V0(|x|) (A4)

in C1
loc(IR

n) ∩D2
1(IR

n), where V0 : IR → IR is given by

V0(X) =

(

1 +
ω2/n

n

4
X2

)1−n
2

We also have that the following sharp C0-estimate holds: there exists C > 0 such that for any
ε > 0 and any x,

µ
1−n

2
ε dg(xε, x)

n−2uε(x) ≤ C (A5)

We let rε be such that
∫

M
Σεdvg =

ωn−1

n
rn
ε (A6)

Then rε → 0 as ε → 0, and µεr
−1
ε → 0 as ε→ 0.

From now on, we let η : [0, 2] → IR be a smooth function such that η = 1 in [0, 1], and η = 0
in [3

2
, 2]. We define

ũε(x) = η

(

dg(xε, x)

rε

)

uε(x) (A7)

Given y ∈M , θ ∈ IR, and µ > 0, we let V(y,θ,µ) be the function given by

V(y,θ,µ)(x) = (1 + θ)µ1−n
2 η

(

dg(y, x)

rε

)

V0

(

(1 − ε)1/2dg(y, x)

µ

)

(A8)

where V0 is as above. For ε > 0 small, we let also Λε be the set of the (y, θ, µ)’s which are such
that

dg(y, xε)

µε
≤ 1 ,

1

2
≤ µε

µ
≤ 2 , −1

2
≤ θ ≤ 1

2

We define the functional

Jε(y, θ, µ) =
∫

M

∣

∣

∣∇(ũε − V(y,θ,µ))
∣

∣

∣

2
dvg

and let (yε, θε, µε) ∈ Λε be such that

Jε(yε, θε, µε) = min
(y,θ,µ)∈Λε

Jε(y, θ, µ) (A9)

We claim that
dg(yε, xε)

µε

→ 0 ,
µε

µε

→ 1 , θε → 0 (A10)

as ε → 0. In order to prove this claim, we proceed as follows. We know, thanks to (A4), that
Jε(xε, 0, µε) → 0 as ε → 0. Hence, Jε(yε, θε, µε) → 0 as ε → 0. Up to a subsequence, we may
assume that

dg(yε, xε)

µε

→ C0 ,
µε

µε

→ C1 , θε → θ0
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as ε→ 0. We write that

Jε(yε, θε, µε) =
∫

M
|∇ũε|2dvg +

∫

M
|∇V(yε,θε,µε)|2dvg − 2

∫

M

(

∇ũε,∇V(yε,θε,µε)

)

dvg

where (., .) is the pointwise scalar product with respect to g. In particular,

Jε(yε, θε, µε) ≥
(

‖∇ũε‖2 − ‖∇V(yε,θε,µε)‖2

)2

Noting that µε → 0 as ε → 0, it is easy to check that

‖∇V(yε,θε,µε)‖2
2 → (1 + θ0)

2K−1
n

as ε→ 0. We also have that ‖∇ũε‖2
2 → K−1

n as ε→ 0. Hence, θ0 = 0, and

∫

M

(

∇ũε,∇V(yε,θε,µε)

)

dvg → 1

Kn

as ε→ 0. It is easily checked that

lim
ε→0

∫

M

(

∇ũε,∇V(yε,θε,µε)

)

dvg

= lim
R→+∞

lim
ε→0

∫

Bxε(Rµε)

(

∇ũε,∇V(yε,θε,µε)

)

dvg

and that

lim
R→+∞

lim
ε→0

∫

Bxε(Rµε)

(

∇ũε,∇V(yε,θε,µε)

)

dvg

= C
n
2
−1

1

∫

IR
n
(∇V0(C1|x− y0|),∇V0(|x|)) dx

where y0 = µ−1
ε exp−1

xε
(yε). Hence,

C
n
2
−1

1

∫

IR
n
(∇V0(C1|x− y0|),∇V0(|x|)) dx =

1

Kn

This implies in turn that C1 = 1 and that y0 = 0, so that (A10) is proved. From now on, we
let

gε(x) = exp⋆
yε
g(rεx)

ṽε(x) = r
n
2
−1

ε ũε

(

expyε
(rεx)

)

vε(x) = r
n
2
−1

ε uε

(

expyε
(rεx)

)

Thanks to (A10), the analysis of subsection 12.3 can be applied to vε. In particular, if we let

µ̂ε =
µε

rε

then µ̂ε → 0 as ε→ 0, and there exists C > 0 such that for any x,

|x|n−2µ̂
1−n

2
ε vε(x) ≤ C (A11)
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Moreover,

lim
ε→0

µ̂
1−n

2
ε vε = H in C1

loc(IR
n\{0}) (A12)

where, if B = B0(1) is the unit ball in IRn,

H(x) =
An

n(n− 2)

(

|x|2−n − 1
)

+
An

2n

(

|x|2 − 1
)

in B

H(x) = 0 in IRn\B
(A13)

and
An = n(n− 2)2n−2ω

2
n
−1

n (A14)

In addition,

∆gεvε + CεΣ̂ε =
1 − ε

Kn
v2⋆−1

ε (A15)

where Σ̂ε(x) = Σε

(

expyε
(rεx)

)

is such that

lim
ε→0

Σ̂ε = 1IB (A16)

in Lp
loc(IR

n) for all p ≥ 1, 1IB being the characteristic function of B, and Cε > 0 is such that

lim
ε→0

µ̂
1−n

2
ε Cε = An (A17)

Thanks to (A11)-(A13) and (A17), for any R ≥ 1,

lim
ε→0

µ̂
1−n

2
ε Cε

∫

B0(R)
vεdvgε = An

∫

B
Hdx =

A2
nωn−1

2n(n+ 2)
(A18)

Now we write that

ṽε(x) = (1 + θε)η(|x|)µ̂1−n
2

ε V0

(

(1 − ε)1/2|x|
µ̂ε

)

+ µ̂
n
2
−1

ε wε (A19)

where wε ∈ C1
0 (B0(2)), the space of C1-functions with compact support in B0(2). Thanks to

(A11), (A12) and (A13),

lim
ε→0

wε =
An

2n
|x|2 − An

2(n− 2)
(A20)

in C1
loc

(

B\{0}
)

∩ Lp (B) for all p < n/(n− 2). Independently, the fact that (yε, θε, µε) realizes
the infimum of Jε gives that

∫

B0(2)
(∇Uε,∇wε) dvgε = 0

∫

B0(2)
(∇Ui,ε,∇wε) dvgε = 0

∫

B0(2)
(∇Φε,∇wε) dvgε = 0

(A21)
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where (., .) is the scalar product with respect to gε, and where

Uε = η(|x|)µ̂1−n
2

ε V0

(

(1 − ε)1/2|x|
µ̂ε

)

Φε = η(|x|)
(

−n− 2

2
V0

(

(1 − ε)1/2|x|
µ̂ε

)

+ V ′
0

(

(1 − ε)1/2|x|
µ̂ε

))

Ui,ε = µ̂
1−n

2
ε

∂

∂xi

(

η(|x|)V0

(

(1 − ε)1/2|x|
µ̂ε

))

for i = 1, . . . , n. A first objective is to compute the L2-norm of the gradient of wε. We start
writing that

µ̂
1−n

2
ε

∫

B0(2)
(∆gε ṽε)wεdvgε

= (1 + θε)µ̂
1−n

2
ε

∫

B0(2)
(∆gεUε)wεdvgε +

∫

B0(2)
|∇wε|2dvgε

so that, thanks to (A21),

∫

B0(2)
|∇wε|2dvgε = µ̂

1−n
2

ε

∫

B0(2)
(∆gε ṽε)wεdvgε

Using (A12), (A13), and (A15), it follows that

∫

B0(2)
|∇wε|2dvgε

=
1 − ε

Kn
µ̂

1−n
2

ε

∫

B
v2⋆−1

ε wεdvgε − Cεµ̂
1−n

2
ε

∫

B
Σ̂εwεdvgε + o(1)

Thanks to (A16), (A17) and (A20) we then get that

∫

B0(2)
|∇wε|2dvgε =

1 − ε

Kn
µ̂

1−n
2

ε

∫

B
v2⋆−1

ε wεdvgε +
2A2

nωn−1

n(n− 2)(n+ 2)
+ o(1) (A22)

Since n = 4, 5, we can write that

∫

B
v2⋆−1

ε wεdvgε = (1 + θε)
2⋆−1

∫

B
U2⋆−1

ε wεdvgε

+(2⋆ − 1)(1 + θε)
2⋆−2µ̂

n
2
−1

ε

∫

B
U2⋆−2

ε w2
εdvgε

+O
(

µ̂n−2
ε

∫

B
U2⋆−3

ε |wε|3dvgε

)

+O
(

µ̂
n
2
+1

ε

∫

B
|wε|2

⋆

dvgε

)

Since Uε is radially symmetrical,

∆gεUε =
1 − ε

Kn

U2⋆−1
ε +O (rε|x|U ′

ε(|x|))
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in B. Therefore, using (A21),
∫

B
U2⋆−1

ε wεdvgε

=
Kn

1 − ε

∫

B
(∆gεUε)wεdvgε +O

(

rε

∫

B
|x||∇Uε||wε|dvgε

)

= − Kn

1 − ε

∫

B0(2)\B
(∆gεUε)wεdvgε +O

(

rε

∫

B
|x||∇Uε||wε|dvgε

)

Independently, thanks to Hölder’s inequality, and to the Euclidean Sobolev inequality, we can
write that

∫

B
|x||∇Uε||wε|dvgε ≤ C‖∇wε‖2

(∫

B
(|x||∇Uε|)

2⋆

2⋆−1 dvgε

)
2⋆−1
2⋆

where C > 0 is independent of ε. Since n = 4, 5,
∫

B
(|x||∇Uε|)

2⋆

2⋆−1 dvgε = O

(

µ̂
n(n−2)

n+2
ε

)

Therefore,
∫

B
U2⋆−1

ε wεdvgε = O
(

µ̂
n
2
−1

ε

)

+ o
(

µ̂
n
2
−1

ε ‖∇wε‖2

)

Coming back to (A22) we then get that

(1 + o(1))
∫

B0(2)
|∇wε|2dvgε

= O(1) + (2⋆ − 1)(1 + θε)
2⋆−2(1 − ε)

∫

B
U2⋆−2

ε w2
εdvgε

(A23)

We claim now that ∫

B0(2)
|∇wε|2dvgε = O(1) (A24)

In order to prove (A24), we proceed by contradiction, assuming that
∫

B0(2)
|∇wε|2dvgε → +∞ and

∫

B
U2⋆−2

ε w2
εdvgε → +∞

as ε→ 0, and we consider the following eigenvalue problem:

∆gεϕi,ε = µi,εU
2⋆−2
ε ϕi,ε in B0(2)

ϕi,ε = 0 on ∂B0(2)

where ∫

B0(2)
U2⋆−2

ε ϕi,εϕj,εdvgε = δij

and µ1,ε ≤ . . . ≤ µi,ε ≤ . . .. Since gε → ξ in C0
loc(IR

n) as ε → 0, ξ the Euclidean metric, the
analysis of subsection 12.1.6 can be applied to the present situation. We then get that for any
i ≥ 1,

µi,ε → µi , and
∫

B0(2)
U2⋆−2

ε (ϕi,ε − ηψi,ε) dvgε → 0
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when ε→ 0, where

µ̂
n
2
−1

ε ψi,ε

(

µ̂ε|x|√
1 − ε

)

= ψi(x)

and

∆ψi = µiV0(|x|)2⋆−2ψi in IRn ,
∫

IR
n
V0(|x|)2⋆−2ψ2

i dx < +∞

Thanks to Bianchi-Egnell [4] and Rey [34],

µ1 =
1

Kn

, µ2 = . . . = µn+2 =
2⋆ − 1

Kn

, µn+3 >
2⋆ − 1

Kn

and ψ1(x) = V0(|x|) while

ψi(x) =

(

1 +
ω2/n

n

4
|x|2

)−n
2

xi−1 for i = 2, . . . , n+ 1 ,

ψn+2(x) =

(

1 +
ω2/n

n

4
|x|2

)−n
2
(

1 − ω2/n
n

4
|x|2

)

We let

wε =
n+2
∑

i=1

αi,εϕi,ε +Rε

where

αi,ε =

∫

B0(2) (∇wε,∇ϕi,ε) dvgε
∫

B0(2) |∇ϕi,ε|2dvgε

Hence,

αi,ε =
1

µi,ε

∫

B0(2)
(∇wε,∇(ϕi,ε − ηψi,ε)) dvgε +

1

µi,ε

∫

B0(2)
(∇wε,∇(ηψi,ε)) dvgε

and it is easily checked that this implies that

α2
i,ε = o

(

‖∇wε‖2
2

)

+O
(

X2
ε

)

where
Xε =

∫

B0(2)
(∇wε,∇(ηψi,ε)) dvgε

Thanks to (A21) we then get that for any i = 1, . . . , n+ 2,

α2
i,ε = o

(

‖∇wε‖2
2

)

+ o(1)

Independently,

∫

B0(2)
|∇wε|2dvgε ≥

n+2
∑

i=1

µi,εα
2
i,ε + µn+3,ε

∫

B0(2)
U2⋆−2

ε R2
εdvgε
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and
∫

B0(2)
U2⋆−2

ε w2
εdvgε =

n+2
∑

i=1

α2
i,ε +

∫

B0(2)
U2⋆−2

ε R2
εdvgε

Therefore, since µn+3,ε → µn+3 as ε→ 0, and µn+3 >
2⋆−1
Kn

,

lim inf
ε→0

∫

B0(2) |∇wε|2dvgε
∫

B0(2) U
2⋆−2
ε w2

εdvgε

>
2⋆ − 1

Kn

Noting that

lim
ε→0

∫

B0(2) |∇wε|2dvgε
∫

B |∇wε|2dvgε

= 1

it follows that

lim inf
ε→0

∫

B0(2) |∇wε|2dvgε
∫

B U
2⋆−2
ε w2

εdvgε

>
2⋆ − 1

Kn

and we get a contradiction by coming back to (A23). This proves (A24). Now we compute

Aε =
∫

B0(2)
|∇ṽε|2dx

We let η̃ε be the function given by η̃ε(x) = η
(

r−1
ε dg(xε, expyε

(rεx)
)

. Then, on the one hand,

∫

B0(2)
|∇ṽε|2dvgε =

∫

B0(2)
η̃2

εvε∆gεvεdvgε +
∫

B0(2)
|∇η̃ε|2v2

εdvgε

=
1 − ε

Kn

∫

B0(2)
η̃2

εv
2⋆

ε dvgε − Cε

∫

B0(2)
η̃2

εvεdvgε +
∫

B0(2)
|∇η̃ε|2v2

εdvgε

Thanks to (A5), but also (A12), (A13), and (A18), it follows that

∫

B0(2)
|∇ṽε|2dvgε =

1 − ε

Kn

− A2
nωn−1

2n(n+ 2)
µ̂n−2

ε + o
(

µ̂n−2
ε

)

On the other hand, thanks to (A21),

∫

B0(2)
|∇ṽε|2dvgε = (1 + θε)

2
∫

B0(2)
|∇Uε|2dvgε + µ̂n−2

ε

∫

B0(2)
|∇wε|2dvgε

+2(1 + θε)µ̂
n
2
−1

ε

∫

B0(2)
(∇Uε,∇wε) dvgε

= (1 + θε)
2
∫

B0(2)
|∇Uε|2dvgε + µ̂n−2

ε

∫

B0(2)
|∇wε|2dvgε

Noting that Uε is radially symmetrical, thanks to the Cartan expansion of a metric in geodesic
normal coordinates, it is easily checked that

∫

B0(2)
|∇Uε|2dvgε =

∫

B0(2)
|∇Uε|2dx−

(n− 2)(n+ 2)

6(n− 4)(1 − ε)n/2
Sg(yε)r

2
ε µ̂

2
ε + o

(

µ̂n−2
ε

)
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when n = 5, and that

∫

B0(2)
|∇Uε|2dvgε =

∫

B0(2)
|∇Uε|2dx−

8ω3

3ω4(1 − ε)2
Sg(yε)r

2
ε µ̂

2
ε| ln µ̂ε| + o

(

µ̂2
ε

)

when n = 4. Combining the above quations, it follows that

(1 + θε)
2
∫

B0(2)
|∇Uε|2dx+ µ̂n−2

ε

∫

B0(2)
|∇wε|2dvgε

=
1 − ε

Kn
− A2

nωn−1

2n(n+ 2)
µ̂n−2

ε +
(n− 2)(n + 2)(1 + θε)

2

6(n− 4)(1 − ε)n/2
Sg(yε)r

2
ε µ̂

2
ε + o

(

µ̂n−2
ε

)

when n = 5, and that

(1 + θε)
2
∫

B0(2)
|∇Uε|2dx+ µ̂n−2

ε

∫

B0(2)
|∇wε|2dvgε

=
1 − ε

K4

− A2
4ω3

48
µ̂2

ε +
8ω3(1 + θε)

2

3ω4(1 − ε)2
Sg(yε)r

2
ε µ̂

2
ε| ln µ̂ε| + o

(

µ̂2
ε

)

when n = 4. Coming back to the computation of Aε, we can write that

∫

B0(2)
|∇ṽε|2dx = (1 + θε)

2
∫

B0(2)
|∇Uε|2dx

+2(1 + θε)µ̂
n
2
−1

ε

∫

B0(2)
(∇Uε,∇wε) dx+ µ̂n−2

ε (1 + o(1))
∫

B0(2)
|∇wε|2dvgε

Thanks to (A21), and to the Cartan expansion of a metric in geodesic normal coordinates,

∫

B0(2)
(∇Uε,∇wε) dx = O

(

r2
ε

∫

B0(2)
|x|2|∇Uε||∇wε|dx

)

= O
(

r2
ε µ̂

n
2
−1

ε ‖∇wε‖2

)

= o
(

µ̂
n
2
−1

ε

)

+ o
(

µ̂
n
2
−1

ε ‖∇wε‖2
2

)

Therefore, thanks to (A24), and the above equations,

Aε =
1 − ε

Kn
− A2

nωn−1

2n(n + 2)
µ̂n−2

ε +
(n− 2)(n+ 2)(1 + θε)

2

6(n− 4)(1 − ε)n/2
Sg(yε)r

2
ε µ̂

2
ε + o

(

µ̂n−2
ε

)

(A25)

when n = 5, and

Aε =
1 − ε

K4
− A2

4ω3

48
µ̂2

ε +
8ω3(1 + θε)

2

3ω4(1 − ε)2
Sg(yε)r

2
ε µ̂

2
ε| ln µ̂ε| + o

(

µ̂2
ε

)

(A26)

when n = 4. Now we compute

Bε =

(

∫

B0(2)
ṽ2⋆

ε dx

)2/2⋆
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Thanks to (A24), we can write that
∫

B0(2)
ṽ2⋆

ε dx = (1 + θε)
2⋆
∫

B0(2)
U2⋆

ε dx+ 2⋆(1 + θε)
2⋆−1µ̂

n
2
−1

ε

∫

B0(2)
U2⋆−1

ε wεdx

+
2⋆(2⋆ − 1)

2
(1 + θε)

2⋆−2µ̂n−2
ε

∫

B0(2)
U2⋆−2

ε w2
εdx+ o

(

µ̂n−2
ε

)

Thanks to (A23)-(A24) we can also write that
∫

B0(2)
ṽ2⋆

ε dvgε = 1 + o
(

µ̂n−2
ε

)

= (1 + θε)
2⋆
∫

B0(2)
U2⋆

ε dvgε + 2⋆(1 + θε)
2⋆−1µ̂

n
2
−1

ε

∫

B0(2)
U2⋆−1

ε wεdvgε

+
2⋆(2⋆ − 1)

2
(1 + θε)

2⋆−2µ̂n−2
ε

∫

B0(2)
U2⋆−2

ε w2
εdx+ o

(

µ̂n−2
ε

)

The Cartan expansion of a metric in geodesic normal coordinates gives that
∫

B0(2)
U2⋆

ε dvgε =
∫

B0(2)
U2⋆

ε dx− nKn

6
Sg(yε)(1 − ε)−1−n

2 r2
ε µ̂

2
ε + o

(

µ̂n−2
ε

)

On the other hand, it is easily checked that
∫

B0(2)
U2⋆−1

ε wεdvgε =
∫

B0(2)
U2⋆−1

ε wεdx+ o
(

µ̂
n
2
−1

ε

)

Combining the above equations, we get that
∫

B0(2)
ṽ2⋆

ε dx = 1 + (1 + θε)
2⋆ nKn

6
Sg(yε)(1 − ε)−1−n

2 r2
ε µ̂

2
ε + o

(

µ̂n−2
ε

)

and it follows that

Bε = 1 +
(n− 2)Kn

6
Sg(yε)(1 − ε)−1−n

2 (1 + θε)
2⋆

r2
ε µ̂

2
ε + o

(

µ̂n−2
ε

)

(A27)

The sharp Euclidean Sobolev inequality applied to the ṽε’s reads as

Bε ≤ KnAε (A28)

Combining (A25)-(A28), we get that

ε+
A2

4K4ω3

48
µ̂2

ε ≤
8K4ω3(1 + θε)

2

3ω4(1 − ε)2
Sg(yε)r

2
ε µ̂

2
ε| ln µ̂ε| + o

(

µ̂2
ε

)

(A29)

when n = 4, and that

ε+
(n− 2)Kn(1 + θε)

2

6(1 − ε)
n
2

(

(1 + θε)
2⋆−2

1 − ε
− n+ 2

n− 4

)

Sg(yε)r
2
ε µ̂

2
ε

≤ −A
2
nKnωn−1

2n(n+ 2)
µ̂n−2

ε + o
(

µ̂n−2
ε

)

(A30)

when n = 5. Since Sg(yε) ≤ 0, (A29) and (A30) are impossible. This is the contradiction we
were looking for. Theorem 4.3 is proved.
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[16] Druet, O., Inégalités de Sobolev-Poincaré en dimensions 4 et 5 et courbure scalaire négative
ou nulle, Private communication, 2002.

119



[17] Druet, O., and Hebey, E., The AB program in geometric analysis. Sharp Sobolev inequal-
ities and related problems, Memoirs of the American Mathematical Society, To appear.

[18] Druet, O., and Hebey, E., Asymptotics for sharp Sobolev-Poincaré inequalities on compact
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