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Introduction

Given (M, g) a smooth compact n-dimensional Riemannian manifold, one easily defines the
Sobolev spaces HE (M), following what is done in the more traditionnal Euclidean context. For
instance, when & = 1, and p = 2, one may define the Sobolev space H:(M) as follows: for
u e C®(M), we let

lullze = [lulls + | Vull2

where |||, is the LP-norm with respect to the Riemannian measure dv,. We then define HZ (M)
as the completion of C°°(M) with respect to ||.|| 2. Very useful properties of H} (more generally
of HY p > 1) are that Lipschitz functions on M do belong to the Sobolev space HZ(M), and
that if w € HZ(M), then |u| € H(M) and |V|u|| = |Vu| almost everywhere.

As for bounded open subsets of the Euclidean space, the Sobolev embedding theorem (con-
tinuous embeddings), and the Rellich-Kondrakov theorem (compact embeddings), do hold.
Assume that n > 3, and let 2* = % be the critical Sobolev exponent. Then for any p € [1,2*],
H(M) C LP(M) and this embedding is continuous, with the property that it is also com-
pact if p < 2*. The Sobolev inequality corresponding to the critical continuous embedding
H2(M) C L* (M) can be written as follows: for any u € HZ(M),

lullz: < Adl[Vullz + Bullullz (0.1)

where A; and Bj are positive constants independent of u, but that may depend on the manifold.
Another very useful inequality, closely related to the Sobolev inequality, is the so-called Poincaré
inequality. In the particular case of the H2-Sobolev space, the Poincaré inequality reduces to
the Rayleigh characterization of the first nonzero eigenvalue of the Laplacian: there exists a
positive constant A, such that for any u € HZ(M),

lu —all3 < As|[Vul3 (0.2)

where 1 = V;l Jar udvg is the average of u, and V the volume of M with respect to g. In
particular, it easily follows from (0.2) that for any u € HZ(M),

lullz < As[|Vull3 + Bs|lull (0.3)

where A3 and Bj are positive constants independent of u, but that may depend on the manifold.
Such an inequality appeared first in the Courant and Hilbert monograph [9]. Combining (0.1)
and (0.3), we do get that there exist positive constants A and B such that for any u € HZ(M),

lull2 < AlVullz + Bllull (0.4)

This inequality was considered in Nirenberg [31]. We refer to this inequality as the Sobolev-
Poincaré inequality.

These notes are devoted to the study of the sharp form of (0.4) with respect to the first
constant. They are both a combination of a series of three papers by Druet-Hebey [18], Druet-
Hebey-Vaugon [19] and Hebey [25], and an expended version of a series of lectures given by
the author at various places like the university of Texas at Austin, Princeton university, the
university of British Columbia, and the scuola normale superiore di Pisa. New results are also
presented. The author wishes to express his gratitude to the above institutions for their warm
hospitality.



1 Few words on the Euclidean space

It is known since the work of Sobolev [37] that there exists a positive constant K such that for
any u € C§°(IR"™), the space of smooth functions with compact support in IR",

lullz: < K[[Vull2 (1.1)

More direct arguments were later on discovered in independent works by Gagliardo [21] and
Nirenberg [31]. These different approaches of Gagliardo, Nirenberg, and Sobolev do not give
the value of the best constant K in (1.1). A discussion of the sharp form of (1.1) restricted to
the case n = 3 appeared first in Rosen [35]. Then we find independent works by Aubin [3] and
Talenti [38] where the sharp form of (1.1) is given. If K, stands for the best constant in (1.1),
it was shown by these authors that

4

n(n — 2)w72/"

n —

where w,, is the volume of the unit n-sphere. The sharp Sobolev inequality then reads as
lull3 < KallVul (1.2)

and it is easily seen that equality holds in (1.2) if u has the form
w= (At e —ao?) * (1.3)

where A is any positive constant and x, is any point in IR". Both the approaches in [3] and
[38] were based on previous work by Bliss [5] where K, was computed for radially symmetric
functions. By standard Morse theory, it suffices to prove (1.2) for continuous nonnegative
functions u with compact support €, Q being itself smooth, u being smooth in Q and such
that it has only nondegenerate critical points in Q. For such an u, let u* : IR" — IR, radially
symmetric, nonnegative, and decreasing in |z| be defined by

Vols({x € R",u*(x) > t}) = Vols ({x € R",u(x) > t})

where § stands for the Euclidean metric, and Vols X for the Euclidean volume of X. It is easily
seen that u* has compact support and is Lipschitz. Moreover, the co-area formula gives that
for any m > 1,

/ \vu|mdx2/ V| de
R™ R™

/ |u|mdx:/ |u*|™dx
R" R"

It follows that it suffices to prove (1.2) for decreasing absolutely continuous radially symmetric
functions which equal zero at infinity, and we are back to the Bliss argument.

and



2 Sharp Sobolev-Poincaré inequalities - The questions

Mimicking what has been done for the standard Sobolev inequality, see Hebey [24] and Druet-
Hebey [17] for expositions in book form, the goal in these notes is to discuss the sharp form of
(0.4) with respect to its first constant. Given (M, g) smooth, compact, of dimension n > 3, we
define the sharp constant A4(M) in (0.4) by

Ay(M) = inf {As.t. 3B for which (0.4) holds with A and B}

where, by saying that (0.4) holds with A and B, we mean that (0.4) holds with A and B for
all functions u € H(M). The first question to consider is whether or not we can compute
the value of A4(M). It turns out that the answer to this question is simple and follows from
local comparison arguments with the Euclidean metric. More precisely, we will return to these
statements in section 5, it is easily seen that the two following propositions hold:

(1) any constant A in (0.4), whatever B and the manifold (M, g) are, has to be such that
A > K,, and

(2) for any (M, g), and any € > 0, there exists B. > 0 such that (0.4) holds with A = K, +¢
and B = B..

In other words, (2) says that for any smooth compact Riemannian manifold (M, g) of dimension
n > 3, and for any & > 0, there exists a positive constant B. such that for any u € HZ(M),

lull3 < (K +€) [Vull3 + Bellull (2.1)

It clearly follows from (1) that As(M) > K,. It clearly follows from (2) that As(M) < K,, +¢
for all e > 0. Hence, (1) and (2) give that for any smooth compact Riemannian manifold (M, g)
of dimension n > 3, A;(M) = K,. In particular, A;(M) does not depend on the manifold.
This is not anymore the case for B.. Taking u = 1 in (2.1), it is easily seen that B, > Vg_("“)/ "
where V, is the volume of M with respect to g. In particular, B, has to depend on the manifold.

Now we consider what we refer to as the sharp Sobolev-Poincaré inequality. Given (M, g)

a smooth compact Riemannian manifold of dimension n > 3, we say that the sharp Sobolev-

Poincaré inequality is true on (M, g) if there exists a positive constant B such that for any
ue H(M),

lull3. < Kl Vaull3 + Bllull} (2.2)

Depending on the manifold, (2.2) may be true, or may not be true. The first question we ask
is the following:

Question 1: Given a smooth compact Riemannian manifold (M, g) of dimension n > 3, is
(2.2) true on (M,g) ¢

If this is the case, a similar statement is that A,(M) is attained in (0.4), or also that we can
take € = 0 in (2.1). Now we distinguish two cases, depending on whether question 1 receives a
positive answer or not.

In the first case, we assume that the manifold we consider is such that (2.2) is true. Then
we can saturate (2.2) with respect to the remaining constant B. More precisely, when (2.2) is
true, we define By(g) by

By(g) = inf {B s.t. (2.2) is true}



In other words, we define By(g) as the smallest constant B in (2.2). Then we get for free that
for any u € HZ(M),
lullz: < Kl Vullz + Bo(g)|lullt (2.3)

We refer to (2.3) as the saturated form of the sharp inequality (2.2). Taking v = 1 in (2.3),
it is easily seen that By(g) > V, /" In particular, when it exists, By(g) depends on the
manifold. When (2.3) is true we can define the notion of an extremal function. We say that a
nonzero function vy € HZ(M) is an extremal function for (2.3) if

oI5+ = Knl|Vuoll3 + Bo(g)luoll¥

In other words, we say that a nonzero function ug € HZ(M) is an extremal function for (2.3) if
it realizes the equality in (2.3). Then the second question we ask is the following:

Question 2: Assuming that (2.2) is true, does there exist extremal functions for (2.3) ¢

In the second case, we assume that the manifold we consider is such that (2.2) is false. In other
words, we assume that for any B > 0, there exists u € HZ(M) which contradicts (2.2). Then
we cannot define anymore the notion of an extremal function. However, coming back to the
asymptotically sharp inequality (2.1), we can saturate B.. Let B.(g) be the smallest B, in (2.1)
given by

B.(g) = inf {B€ s.t. (2.1) is true}

Then we get for free that for any u € HZ(M),
lull2 < (Kn+e) [Vull3 + Be(g)llulli (2.4)

Since (2.2) is false, we know that B.(g) — 400 as ¢ — 0. The third and last question we ask
is the following:

Question 3: Assuming that (2.2) is false, what is the asymptotic behavior of B.(g) as € goes
to0 ?

The answers to these three questions involve the dimension and the geometry. Concerning the
effect of geometry, we need few words on the Cartan-Hadamard conjecture. This is the subject
of the following section.

3 The Cartan-Hadamard conjecture

By definition a Cartan-Hadamard manifold is a complete simply-connected Riemannian man-
ifold of nonpositive sectional curvature. The name of a Cartan-Hadamard manifold comes
form the so-called Cartan-Hadamard theorem asserting that for any z in a complete Rieman-
nian manifold of nonpositive sectional curvature, the exponential map exp, is a covering. In

particular, the exponential map exp, realizes a diffeomorphism from IR" onto M if M is simply-
connected.

Let (M, §) be a Cartan-Hadamard manifold of dimension n. The n-dimensional Cartan-
Hadamard conjecture states that for any smooth bounded domain € in M,

|OQ|§ (wn_l)%
> 3.1
g =" .



where |0Q|; is the volume of 02 with respect to the metric induced by g, || is the volume of
Q) with respect to g, and w,,_1 is the volume of the unit (n — 1)-sphere. Such an inequality holds
on the Euclidean space. Moreover, still for the Euclidean space, equality holds if and only if 2
is a ball. Another formulation of the Cartan-Hadamard conjecture is that the sharp Euclidean
isoperimetric inequality continues to be true for Cartan-Hadamard manifolds.

The Cartan-Hadamard conjecture is proved to be true in dimension 2 by Weil [39], in
dimension 3 by Kleiner [29], and in dimension 4 by Croke [10]. Croke’s argument, based on
Santalo’s formula, is perharps the most surprising. Croke gets explicit Euclidean-type generic
Sobolev inequalities for all n > 3, with the property that one recovers (3.1) only when n = 4.
For n > 3, let

n—2

w/2
Cn) = “n=2 ( [ oD sin”‘2(t)dt)

n—2

n—1
n—1

Croke’s result [10] is that for any smooth bounded domain Q in M,
AL
Qg T Gy

Noting that C(n) is sharp when n = 4, it follows that (3.1) is true for any 4-dimensional
Cartan-Hadamard manifold.

As far as we know, the Cartan-Hadamard conjecture is open when n > 5. However, the sharp
isoperimetric inequality (3.1) is basically understood for small domains and for large domains.
By Yau [40] we indeed have that if (M, §) is a Cartan-Hadamard manifold of dimension n, with
sectional curvature less than K < 0, then for any smooth bounded domain §2 in M,

1095 > (n — 1)V —-K|Q;

Hence, for such manifolds, (3.1) is true provided that the volume of (2 is sufficiently large. On
the other hand, thanks to the recent Druet [14] and Johnson and Morgan [28], we also have
curvature conditions which ensure that (3.1) is true if the diameter of ) is sufficiently small.
We refer to these references for more details.

4 Sharp Sobolev-Poincaré inequalities - The results

We return to the sharp Sobolev-Poincaré inequality and to the questions we asked. We start
with the first question we asked of whether or not the sharp Sobolev-Poincaré inequality (2.2)
is true. A first answer to this question is the following, extracted from Druet-Hebey-Vaugon
[19] and Hebey [25].

Theorem 4.1 (Extracted from [19] and [25]) The sharp Sobolev-Poincaré inequality (2.2)
is true on any smooth compact Riemannian 3-manifold. When n > 4, (2.2) is still true on any
smooth compact Riemannian n-manifold of negative scalar curvature, but (2.2) is false when
the scalar curvature of the manifold is positive somewhere.



This first result clearly illustrates the influence of the dimension and the geometry when
studying the sharp Sobolev-Poincaré inequality. When n = 3, dimension wins and (2.2) is
always true without any kind of assumption on the manifold. When n > 4, geometry wins
and (2.2) is sometimes true and sometimes false, depending on the sign of the scalar curvature.
Both phenomena are somehow surprising. For instance, if we consider the standard Sobolev
inequality, in other words if we replace in (0.4) the square of the L'-norm of u by the square of
the L2-norm of u, then, as it was shown by Hebey and Vaugon [27], the corresponding sharp
inequality is always true.

Still concerning the first question we asked, a natural additional question to ask with respect
to Theorem 4.1 is whether or not (2.2) is still true if we push the curvature from negative values
to nonpositive values. In other words, an additional natural question to ask is:

Question 1': Is (2.2) true on manifolds of nonpositive curvature ¢

It turns out rather quickly that the scalar curvature does not control anymore the situation in
this critical limit case. We need more geometric information. This is a typical situation where
the Cartan-Hadamard conjecture plays a role. The answer to this question we just asked is
given by the following result. It is once more extracted from Druet-Hebey-Vaugon [19] and
Hebey [25].

Theorem 4.2 (Extracted from [19] and [25]) The sharp Sobolev-Poincaré inequality (2.2)
s true on any smooth compact Riemannian n-manifold, n > 4, of nonpositive sectional cur-
vature if the n-dimensional Cartan-Hadamard conjecture is true. The sharp Sobolev-Poincaré
inequality (2.2) is also true on any smooth compact conformally flat Riemannian n-manifold,
n > 4, of nonpositive scalar curvature. On the other hand, (2.2) is false if n > 6, the manifold
1s not conformally flat and the scalar curvature is zero around one nonconformally flat point.

Since the 4-dimensional Cartan-Hadamard conjecture is true, it follows from the first part
of this theorem that the sharp Sobolev-Poincaré inequality (2.2) is true on any smooth compact
Riemannian 4-manifold of nonpositive sectional curvature.

By definition, a Riemannian manifold (), g) is said to be conformally flat if, up to conformal
changes of the metric, we do get local isometries with the Euclidean space. When n > 4, which
is the case in Theorem 4.2, this amounts to say that the Weyl curvature tensor is zero. When
this is not the case, we refer to nonconformally flat points as points where the Weyl curvature
tensor is not zero.

Theorem 4.2 clearly illustrates the idea that we need more geometric informations when
pushing the curvature from negative values to nonpositive values. This is clear in the first part
of the theorem where we do need the Cartan-Hadamard conjecture. This is also clear in the
second and third parts of the theorem. According to the second part we can push the scalar
curvature from negative values to nonpositive values when the manifold is conformally flat.
According to the third part, at least when n > 6, there is no hope that (2.2) is true under the
only assumption that the scalar curvature is nonpositive.

A simple corollary to the third part of the theorem is the following rigidity type result.
Similar phenomena were observed for the standard Sobolev inequalities by Druet [12] in the
compact setting, and by Ledoux [30] in the complete setting.



Corollary 4.1 Let (M, g) be a smooth compact Riemannian manifold of dimensionn > 6 and
nonnegative Ricci curvature. If (2.2) is true on (M, g), then g is flat and M is covered by a
torus.

Theorem 4.2 leaves open the question of whether or not (2.2) is true on manifolds of non-
positive scalar curvature and dimensions 4 and 5 (the 3-dimensional case is settled in Theorem
4.1). The following result answers this question.

Theorem 4.3 (Extracted from [16]) The sharp Sobolev-Poincaré inequality (2.2) is true on
any smooth compact Riemannian n-manifold, n = 4,5, of nonpositive scalar curvature.

Thanks to this theorem, and thanks to Theorems 4.1 and 4.2, we thus face the following
situation:

(1) When n = 3, (2.2) is true without any assumption on the scalar curvature ;

(2) When n = 4,5, (2.2) is true if the scalar curvature is nonpositive ;

(3) When n > 6, (2.2) is true if the scalar curvature is nonpositive and the manifold is
conformally flat, but there are in any dimensions n > 6 examples of non conformally flat
manifolds of nonpositive scalar curvature for which (2.2) is false.

In particular, corollary 4.1 is false in dimension 3 (thanks to Theorem 4.1), and in dimensions
4 and 5 (thanks to Theorem 4.3).

Theorems 4.1, 4.2 and 4.3 answer the first question we asked in section 2. We are now left
with the second and third questions. Namely with the question of the existence of extremal
functions for (2.3) when (2.2) is true, and with the question of the asymptotic behavior of (2.4)
when (2.2) is false. Thanks to Theorem 4.1 we know that (2.2) is true if the scalar curvature
S, is everywhere negative, and that (2.2) is false if S, is positive somewhere. The following
result, extracted from Druet-Hebey [18] and Hebey [25], answers questions 2 and 3, providing,
together with Theorems 4.1, 4.2 and 4.3, a rather complete picture in the study of the sharp
Sobolev-Poincaré inequality on compact Riemannian manifolds.

Theorem 4.4 (Extracted from [18] and [25]) The saturated inequality (2.3) possesses ex-
tremal functions on any smooth compact Riemannian n-manifold, n > 4, of negative scalar
curvature. On the other hand, if (M, g) is a smooth compact Riemannian n-manifold, n > 4,
whose scalar curvature Sy is positive somewhere, then

n+42
222 4y n2)  (n—a)(n+2)

B.(g) = C(n) (mj\z}XSg) g 22 4o <5 ﬂ)

where C(n) > 0 depending only on n is explicitly known, and where e~ "=/2 has to be under-
stood as |Ine| when n = 4.

The constant C'(n) in this theorem is given by the following expressions. When n = 4 we

find that C(4) = 23&4“3, and when n > 5, we find that

2+i n2-12
2n(n + 2wy " K"
C(’”’) = n+42 2n

(4n=3n(n — 2)(n —4))"2 w7}




In particular, it follows from the second part of the theorem that for any C' > C'(n), there exists
g0 > 0 such that for any ¢ € (0,&9), and any u € H (M),

3
Jull < (Ko + ) [Vull3 + C (maxs,) nef ul?

when n = 4, and

lullze < (Ko + ) [IVull; + ———ers—llullt
I 2(n—2)

when n > 5. The rest of these notes is devoted to the proofs of these results. We follow
the original references Druet-Hebey [18], Druet-Hebey-Vaugon [19], and Hebey [25]. In some
places, slightly simplier arguments exist thanks to the more recent Druet [14] or Johnson and
Morgan [28].

5 Value of the sharp constant

We return to propositions (1) and (2) of section 2, and prove these two propositions. Concerning
(1) we may proceed by contradiction. Suppose that there exist a Riemannian n-manifold (M, g)
and real numbers A < K,, and B, such that for any u € HZ(M),

</ luf?" do >2/2* <A [ |VulPde,+ B </ luldv )2 (5.1)
M g - M g M g

Let © € M. It is easy to see that for any € > 0 there exists a chart (£2,¢) of M at z, and there
exists 0 > 0 such that p(2) = By(d), the Euclidean ball of center 0 and radius ¢ in IR", and
such that the components g;; of g in this chart satisfy

(1 —€)di; < gi5 < (1 +¢)dy;

as bilinear forms. Choosing ¢ small enough we then get by (5.1) that there exist d; > 0,
A" < K, and B’ € IR such that for any 0 € (0,9y) and any u € C§° (By(0)),

. 2/2* 2
(/ uf? da:) <A [ |Vufde+ B (/ |u|d:1:)
R™ IR™ R™
2 2/2*
([, las) <iBa@1e2 ([ o)
By (9) By (9)

where |By(d)| denotes the Euclidean volume of By(d). Choosing ¢ small enough, it follows that
there exist § > 0 and A” < K, such that for any u € C5° (By(0)),

N2/
(/ |u|? d:v) < A”/ |Vul*dz
R" R"

Let u € C§g°(IR™). Set up(z) = u(Az), A > 0. For A large enough, uy € C3° (By(d)). Hence,

By Holder,

N 2/2*
( /m s |? dm) <A /m Vs P de (5.2)

10



But

/ lun |2 di = xn/ | da
R™ R™

/ |Vuy|?de = )\2_"/ |Vul?dz
R" R"

while

so that (5.2) implies that

N2/
(/ |u|? d:v) < A”/ |Vul?dz
R R

for all u € C{°(IR"™). Since A” < K, such an inequality is in contradiction with what we said
for the Euclidean space. By contradiction, we have proved that any constant A in (0.4) has to
be such that A > K,,. This proves (1).

Concerning (2), we proceed as follows. We fix ¢ > 0 and let x € M. For any ¢ > 0 there
exists a chart (€2, ¢) at = such that the components g;; of g in this chart satisfy

1 —|— tél] < g” ~ (1 +t)5”

as bilinear forms. Thanks to the sharp FEuclidean Sobolev inequality (1.2), choosing ¢ > 0
sufficiently small, we can assume that for any smooth function u with compact support in §2,

2/2* c
2 € 2
</M lu| dvg> < (Kn+2>/M|Vu| dv, (5.3)

Since M is compact, it can be covered by a finite number of such charts (;,¢;), ¢ =1,..., N.

We let (a;)i=1,.. n be a smooth partition of unity subordinate to the covering (£2;)i=1,..n, and
set
af
i =
¥ 0]

-----

-----

lull3e = Nl 2 = 1 3o mit?lloe 2 < D2 i lla o = D2 Ml v/miull3.

Coming back to (5.3), it follows that
) 2/2*
([ )™ < (Kt )5 [ (/v + 19 i) dv,
M —Ju

N
= (Kat5) S [ (wlVul + 20V |l Vul + 9 Vi) do
i=1

Writing that for any A > 0,

1
2|Vaulu| < A Vul* + XU2

11



it follows that
(/ lul?d )2/2* < (K +5> ((1+NH)\)/ Vul2d +NH(H+1)/ 2 )
| Jul”dvg < (Ent3 | [Vul“dy, 3) [ udvg
where H is such that for any i, |V,/7;| < H. Choosing A > 0 sufficiently small such that
2
(Kn + %) (1+ NH)) < <Kn + 36)

we get that for any u € C(M),
2+ 2 2e 2 2
</ |ul dvg> < (Kn+—>/ |Vul dvg—l—B/ u“dvg
M 3/ /M M

15 1
B_NH<K,L+§> <H+X)

Since the embedding H? C L? is compact, and the embedding L? C L' is continuous, it holds
that for any p > 0, there exists B, > 0 such that for any u € HZ(M),

where

lull3 < pllVull3 + Bylullt
Choosing i > 0 sufficiently small such that
2

(Kot S )+ Bu< Ko+e

it follows that for any u € C*°(M),

(/ lu|?" dv )2/2* < (K, +5)/ |Vu|?dv, + B (/ |u|dv >
M 7 o M 7 M 7

where B = BB,. Since ¢ > 0 is arbitrary, and since C*°(M) is dense in H7 (M), we get that
for any € > 0, there exists B. = B > 0 such that for any u € H?(M),

(/ lu|?" dv )2/2* < (K, +5)/ |Vul®dv, + B, (/ |u|dv )
M 7 o M g M 7

2

2
This proves (2).

6 Test function arguments

We prove in this section the last parts of theorem 4.1 and 4.2. We start with the proof that
(2.2) is false if n > 4 and the scalar curvature Sy is positive somewhere on M. We can do this
very simply. Given z € M such that Sy(x) is positive, we let 7 > 0 be such that r < i,(z), the
injectivity radius at x. In geodesic normal coordinates,

1 ., b 2 1
o /S(T) vdet(g;;)ds =1 6nSg(:c)7’ +O(r%)

12



where S(r) stands for the sphere of radius r and center x in M. For ¢ > 0, we define

ue = (e + 1) = (e 461 i r <6

u. = 0 otherwise

where § € (0,i,(x)) is given and r = d,(z,.). Easy computations lead to

_9)2
frn - =
M
(n+2) .
X (1 Gn(n— ) Sy(x) e+ 0(5)) ifn>4
_ (n — 22)2Wn—1 cl-n/2

1
X (Iff/2 + 6—nSg(:c) elne + 0(51115)) ifn=4

and
/ ug*dvg > M[gﬂ /2
M 2n
x(l—#S (x) 5+0(5)) if n>4
6(n—2) 7
(n — 2)w”—1 [n/2 8—n/2
- 2n "

><(1 —l—o(elns)) ifn=4

where I9 = [(7°(1 +t) "t9dt. As one can easily check

w N (n—2)
n — [n/2 1 _ [n/2
2L, 1 " n "
Hence,
(n —2)%w,_ 1 /(n—2)wy_y (n=2)/n
~ 7 TR [”/2 — - (A =/nel [n/2
Independently,

c|ldv, = O(1

/. Jucldv, = o)

so that e("=2/2 [, |u.|dv, = o(€) if n > 4, and ¢ [ |uc|dv, = o(eIne) if n = 4. Given B € IR,
this leads to

[V |13 + Blluel3
el |3

-1 Sg(f) .
< K, (1— me—l—o(e)) ifn>4

1
< K4_1(1 + éSg(:)s)glne +o(e lne)) ifn=4
As a consequence, for n > 4 and any B € IR,

| Vucl + Bllucllt _ 1
JucTE- K,
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provided that e > 0 is small. Clearly, this implies that (2.2) is false if n > 4 and the scalar
curvature is positive somewhere.

Similarly, we can prove very simply that (2.2) is false if n > 6, the manifold is not conformally
flat and the scalar curvature is zero around one nonconformally flat point. We let W, be the
Weyl tensor of g, and Rc, be the Ricci curvature of g. By assumption, there exists x € M such
that Wy(x) # 0 and S, = 0 in B,(dy) for some §, > 0. We let g be a conformal metric to g
such that Rcz(x) = 0. We let also § > 0 be such that B,(d) with respect to g is a subset of
B, (d9) with respect to g. Since the Weyl curvature tensor is a conformal invariant, Wj(z) # 0.
Given B > 0, it follows from the conformal invariance of the conformal Laplacian that

S |V ulPdvy + B (Jy |uldv,)®

weH2(M)\{0} (Jus |u|2*dv )/
< inf Jar IVulPdog + 4(n 1 Sy Sgutdvg + B (Jar |U|dvg)
> 1 *
uen (Ja [ul? dvg)*”

where B > 0, and H consists of the nonzero functions u € H?(M) which are such that
Suppu C B,(d). For € > 0, we let u. be as above. Then,

J, lueldvs = 0(1)

so that e"=2/2 [, |u.|dv, = o(¢?) if n > 6, and & [, |u.|dv, = o(c?Ine) if n = 6. It easily
follows, as in Aubin [2], that for any B > 0,

IY; |vua|2dvé 4(n 1 Jar S5 uzdvg + B (Jm |ua|dvg)
(Jar e dvg)*™

Ki(l_(j'lm/( )|252+0(52)) ifn > 6
gK%(1+C’2|Wg(x)\2e2ln£+o(521115)) ifn==6

where C and Cy are explicit positive constants which do not depend on . Hence, for any
B >0,
o JulVuPde, By ulde)® 1
weH? (M)\{0} (Jag lul? dvg)** K,y

and this proves that if n > 6 and ¢ is scalar flat in an open neighbourhood of one nonconformally
flat point, then inequality (2.2) is false.

Corollary 4.1 is an easy consequence of these estimates. We let (M, g) be a smooth compact
Riemannian manifold of dimension n > 6 and of nonnegative Ricci curvature. We assume that
(2.2) is true on (M, g). The first of the two estimates above gives that the scalar curvature
S, has to be nonpositive. Hence, (M, ¢g) is Ricci flat. This holds as soon as n > 4. Then the
second of the two estimates above gives that g has to be conformally flat. Hence, g is flat, and
M is covered by a torus thanks to the Bieberbach theorem.
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7 Variational background

For any a > 0, we let I, be the functional defined on HZ(M)\{0} by

IVull3 + oflull¥
lulf3-

I,(u) =

and let

o= _inf I (u 7.1
a H3 (M)\{0} (W) (1)

A reformulation of the results of section 5 is that for any a, u, < K !, and that for any & > 0
there exists a. > 0 (in spirit large) such that for any a > a., o > (1 —¢)K,'. The result we
prove in this section is the following.

Proposition 7.1 Let (M, g) be a smooth compact Riemannian n-manifold of dimensionn > 3.
Suppose that

inf I, (u) < — 7.2
H} (M)\{0} (u) K, (7.2)

Then there exists u, € H} (M), uy > 0, uy £ 0, and 3, € L>°(M) with the property that
0< ¥, <1 and X u, = U, such that
Agug + a(/ Uadvy) S0 = pau? ! (Ea)
M

* . . . . .
and [y uZ dv, = 1. In particular, u, is a minimizer for fi,.

The proof of this proposition goes through rather simple arguments. For ¢ < 2*, let 6, > 1
be given with the property that 6, goes to 1 as ¢ goes to 2*. We let a > 0 be such that (7.2)
is true, and for ¢ < 2* we let
IVull3 + allulg,

HZ(M)\{0} [ull?

Ay =

The embedding of HZ(M) in LY(M) being compact, and since the above functional is homo-
geneous, there exists a nonnegative minimizer u, for A\, such that [ju,|, = 1. Clearly, u, is a
weak solution of -

Agu, + a(/M ugtdvg)?aude Tt = Aud ™t (7.3)

where A, = —divV stands for the Laplacian with respect to g. As one can easily check, up
to a subsequence, we may assume that for some A\, < p,, the sequence (\;) goes to A, as ¢
goes to 2*. Noting that (u,) is bounded in HZ(M), there exists u, € HZ(M) such that, up to
a subsequence, (u,) converges weakly to u, in HZ(M), strongly to u, in L?*(M), and almost
everywhere. Moreover, one can assume that

ul™h — Wt in L¥(M)

where 2% = 2n/(n + 2) is the conjugate exponent of 2*. By (7.2), and since for any £ > 0 there
exists B. such that for any u € HZ(M),

lull2 < (Kn +e)[Vull3 + Bellull}
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one has that u, # 0. This is by now standard. Let ¢, = 6, — 1. Clearly, (u?) is bounded in

LP(M) for any p > 1. Concerning such an assertion, just note that for ¢ > 1,

gq

()™ < ( [ wen) v (74)

where V, stands for the volume of M with respect to g. Since LP-spaces are reflexive for p > 1,
there exists X, € (,~; LP(M) such that for any p > 1, and up to a subsequence,

ug? — ¥, in LF(M)
Passing to the limit as ¢ goes to 2* in (7.4), one gets that for any p > 1,
IZall, < Vg7

As an easy consequence, Y, € L®(M) and 0 < ¥, < 1. Another easy claim is that 3,p = ¢
for any ¢ € H(M) having the property that |¢| < Cu, on M for some constant C' > 0. In
particular, ¥,u, = u,. By passing to the limit in (7.3), one gets that u, is a weak solution of

Agug + Oé(/M Uadvg) Xy = Au2 1 (7.5)

Clearly, ||uqa||2 < 1. Mutiplying (7.5) by u, and integrating over M gives

IVtal3 + ollualli

[uall3-

= )‘aHuaHg_z

As one can easily check, this implies that ||u,|[o« = 1 and that A\, = 4. In particular, u, is a
minimizer for pu,. This proves Proposition 7.1.

Let w € H(M), u > 0, be such that for any nonnegative ¢ € H (M),

/ (VuV)dv, < / u* Lpdu,
M M
where (VuV) is the pointwise scalar product with respect to g of Vu and V. We know

from PDE theory and the De Giorgi-Nash-Moser iterative scheme that v € L*(M), with the
additional property that for any x in M, any A > 0, any p > 0, and any ¢ > 2*, there exists

0 > 0 such that if
/ uldvy, < A
B (26)

then

where C' > 0 does not depend on u. It follows that u, € L>°(M). In particular, u, € HE(M)
for any p > 1, and it follows from (E,) that u, is actually in C** for any A € (0,1). As another
remark, the sequence (ug) is bounded in HZ(M).

16



8 Elementary theory of concentration points

We suppose in this section that the u,’s of section 7 exist for a sequence («) converging to
some ag € (0, +00]. We assume in what follows that

lim [ w’dv, =0 (8.1)
a—ap Jr
As aremark, this is automatically the case if ay = +o0o. Multiplying (E,) by u,, and integrating
over M, we get indeed that
IVuallz + allualli = Aa

As a consequence, ||uq|l1 — 0 as @ — +o0, and by Hélder’s inequality, since u, is of norm
1 in L%, this implies that ||us|ls — 0 as @ — +oo. Another remark is the following. By
Hebey-Vaugon [27], there exists B € IR such that for any u € HZ (M),

. 2/2*
</ |u|? dvg> < Kn/ |Vu|2dvg—|—B/ u*dv,
M M M

Taking u = u, in this inequality, we get that 1 < p, K, + B [}, u2dv,, and it follows from this
inequality and (8.1) that
1
lim p, = —

a—ag n

Similarly,
2
1— B/ uidvg < Kn/ |Vua|2dvg = K, jiq — Ky« (/ uadvg)
M M M

and it follows that )
lim o (/ uadvg> =0
a—aq M

In particular, the L'*-norm of u, goes to 0 as a goes to ay.

Following standard terminology, we say that x € M is a concentration point for the sequence
(uq) if for any 6 > 0,

lim sup u? dvg > 0
a—aq By (9)

Since M is compact, the existence of at least such a point is easy to get. We prove the uniqueness
of the concentration point in this section.

Proposition 8.1 Let (M, g) be a smooth compact Riemannian n-manifold of dimensionn > 3.
We suppose that (7.2) holds for a sequence («) converging to some ag € (0,400], and we let
the uy’s be given by Proposition 7.1. We assume that (8.1) holds. Then, up to a subsequence,
the sequence (uy) has one and only one concentration point.

The proof of this proposition goes through rather simple arguments. Given x € M and

d >0, small, let n € C§°(B,(0)) be such that 0 < n <1 and n =1 in B,(4/2). Multiplying
(E,) by n*uf, k > 1 real, and integrating over M lead to

/ 772u’;Aguadvg+a(/ uadvg)/ n*ufdv, = Ma/ n*u2 T dy, (8.2)
M M M M
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As one can easily check,
/ nul Agugdv, = Ak / |V(nu(k+1)/2)|2dv
M R+ 1)2 @ g

2k —1
2k — 1) /Mn(Agn)Ufi“dvg / [ Vn|Pul dv,

C(k+1)? k+1

while, by Holder’s inequality,

2,2 +k=14 </ (k+1)/2y2* g 2/2*/ 2 g (2*—2)/2*
[ < (e ) (]

According to Hebey and Vaugon [27], there exists B > 0 such that for any u € HZ (M),

2* 2/ / 2 / 2
d < K, Vu|“d B d
() wldv,)™ <K, [ (Vulde,+B [ wtdy,

Coming back to (8.2), and since the second term in the left hand side of (8.2) is nonnegative,
one gets that

. 2/2*
Auh0) ([ (27 au)™ < E oA [,
k+ K’/\V%Fk+ﬂ%%<3/‘fuM4mh

where

(k+1)? e, (25-2)/20
Aok, 8) =1 — wmlf d
(k.0) ekl i duy)

Suppose now that x is a concentration point for (u,). Given § > 0, let

. % .
lim sup u;, dvg = As
a—ag B (6)

Then As > 0 and A\s < 1. Assume that for some > 0, \; < 1. Together with (7.2), we may
then choose k > 1 sufficiently close to 1 such that

(]{7 + 1)2 2% _9) /2%
B KA

1—
4k

>0

The right hand side of (8.3) being bounded for k£ > 1 close to 1, we get with (8.3) the existence
of K > 0 such that for a > 1,

/(nu(kﬂ /2) dU <K

By Hélder’s inequality, writing that 2* = (2* — k — 1) + (k + 1),

2* S (2r=2)/2 (k+1)/2 22
/.%(6/2) u;, dv, < (/Mua dv ) (/ (nuy, )2 dvg)

ox_ 2% (k—1)

S K2/2* (/ Uey 2% _9 d'Ug) (2*_2)/2*
M
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Noting that for £ > 1 close to 1,

2*(k—1)
1< ——= < 2F
2% —2
one gets that
lim uZ dvy = 0 (8.4)

XQ0 J B, (6/2)

This easily follows from Hoélder’s inequality since the L'-norm of u, goes to 0 as a goes to ay,
and since the L?"-norm of u, is 1. Noting that (8.4) is in contradiction with the definition of
a concentration point, one actually has that for any 6 > 0, A\s = 1. As one can easily check,
up to the extraction of a subsequence, this implies that a concentration point must be unique.
Proposition 8.1 is proved.

According to the above proposition, (u,) has, up to a subsequence, one and only one
concentration point xy. One may then assume that for any 6 > 0,

lim ui*dvg =1
a—aq Bzo(é)
Given x # x, one gets with (8.3) that for § > 0 small, the L&)*/2norm of u, in B,(d) is

bounded. As an easy consequence of the De Giorgi-Nash-Moser iterative scheme, noting that
(2%)2/2 > 2*, we then get that

Uq — 0 in C)(M\{x0}) (8.7)

as o goes to a. The u,’s therefore concentrate in the L2 -norm at x, and they converge C°
to 0 outside .

9 Localisation for the sharp Sobolev-Poincaré inequality

We prove in this section that (2.2) is localisable. This is the subject of Proposition 9.1. As we
will see below, the first part of Theorem 4.2, namely that (2.2) is true for manifolds of nonpos-
itive sectional curvature if the Cartan-Hadamard conjecture is true, is an easy consequence of
this proposition.

Proposition 9.1 Let (M, g) be a smooth compact Riemannian n-manifold of dimensionn > 3.
Suppose that for any x in M, there exists £, an open neighborhood of x, and B, € IR, such
that for any u € C§°(§2,),

lull3- < Kol Vullz + Be|lulli (9.1)

Then (2.2) is true on (M, g).

The proof of this proposition goes through rather simple arguments from blow-up theory.
For any o > 0, we let I, be the functional of section 7. We assume that (2.2) is locally valid.
The proposition reduces to the existence of some «aq such that

1
inf I, (u) > —
H%&%\{O} (W) 2 K,
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We proceed by contradiction, and assume that for any o > 0,

1
inf I, (u) < — 9.2
HY (M)\{0} (u) Ky, (9:2)

Then, propositions 7.1 and 8.1 apply. We let xy be the concentration point of (u,), and we use
the notations of sections 7 and 8. By assumption there exists B € IR and 6 > 0 such that for
any u € H&I(B(;),

gr 5 \2/2* / 5 / 2
d < K, Vul|“d B d 9.3
() Juldv)™ < K, | (Vuldv, +B([ Juldy,) (93

where Bs = B,,(6) and H§,(Bs) stands for the completion of C§°(Bs) with respect to | 2
We let n € C§°(Bs) be such that 0 < np < 1 and n = 1 in By for some §' € (0,9). Setting
n' =1-—mn, (9.3) leads in particular to

(/B u?;dvg)w? <K, /M V(1 =1 )ua)|*dv, + B(/M uadvg)2

6/

Clearly, there exists C' > 0, independent of «, such that
[ (=) Pdv, < [ Vualduy+C [ [Vuald,
M M M\By
+C’/ Ua| Ve |do, + C’/ uidvg
M\Bys M\ By

Multiplying (E,) by u,, and integrating over M, gives

2
[ 1Vuald, + o [ uadv,)” = o

Hence,

([35/ u?;dvg)z/z* < Kppo, —aK, (/M uadvg)z

+C/ Vo |2dv, +C/ | Vita]du,
M\By, M\By

+C u? dv —I—B(/ U dv )2
mBy &7 M g
for some other constant C' > 0 independent of a. Clearly,
o, \2/2° -
1— (/35, uy, dvg) < By u;, dvg
while 12 "
2 2
/M\By al Vita]dvg < (/M\B5/ uadvg) (/M\B(;/ IVital dvg)
Since oK, < 1, one gets that
WK — B < fM\B(S/ “i*dvg IM\B(S/ Vo |*dvg fM\BJ, uzdv,
n > 2 2 2
(fM uadvg) (fM uadvg) (fM uadvg) 0.0
+C(IM\B6/ uidvg)yz (IM\B(S/ |Vua|2dvg)1/2 .
2 2
(fM uadvg) (fM uadvg)
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Thanks to the De Giorgi-Nash-Moser iterative scheme,

/ uldv, < Vy( sup u,)’
M\By/ M\By/

< C’(/M uOlalvg)2

where V, stands for the volume of M with respect to g, and C' > 0 is independent of a.. As a
consequence,

u?dv
Jung, Yavy e (9.5)
(fM uadvg)
Together with (8.7),
u? dv N
fM\B(S/ 29 S C( Sup UQ)2 -2
(fM uadvg) M\Bjs
so that >
u? dv
llr—"]il IM\B(;/ (0% 5
(fM uadvg)

For §” € (0,0"), let 0 < n” <1 be a smooth function on M such that n” = 0 on Bs» and 0" =
on M\ Bs.. Mutiplying (E,) by (7”)*u, and integrating over M, gives

=0 (9.6)

/ (7}”)2\Vua|2dvg+2/ N ua (V1" Vus)dv, < Kgl/ (n")?u2 dv,
M M M
In particular,
@ Vuadv, < C [ ) de,
1/2 1/
+C( /M Vi Pude,) /M(n”)2|Vua|2dvg)

for some constant C' > 0 independent of a. Hence,

s (") [Vt *dvg

2

(a2 do,

<
(Jys taduy)” (Jas tadvy)”
Jar IV Pudvg\1/2 1 [, (072 [V ug Pdogy 172
C
" ( (fMuadvg)z) ( (fMuadvg)z )

By (9.6),
Y ( ) f (n//)2u2* dv
m M [} g

a——+0o0 2 = 0
(fM uadvg)

while by (9.5),

2,2
Jar IV u,dv, <

— < C
(fM uadvg)
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for some C' > 0 independent of a. Noting that
iy [VitaPdvy _ fy O Viaa e,
7 > 2
(fM uadvg) (fM uadvg)
one gets the existence of C' > 0 independent of o such that
fM\B(S, |Vua|2dvg
( Ju uadvg) ’

Combining (9.4) with (9.5) to (9.7), leads to a contradiction. This ends the proof of the
proposition.

<C (9.7)

The first part of Theorem 4.2, namely that (2.2) is true for manifolds of nonpositive sectional
curvature if the Cartan-Hadamard conjecture is true, is an easy consequence of Proposition 9.1.
Given (M, g) a smooth compact Riemannian n-manifold, we suppose that its sectional curvature
K, is nonpositive, and that the n-dimensional Cartan-Hadamard conjecture is true. Let (M ,9)
be the universal Riemannian covering of (M, g). Then for any smooth bounded domain € in

M,
|OQ|§ Wn—1 %
o I7 >n(22) ©8)
g

By standard arguments, see for instance Hebey [24], (9.8) implies that for any u € CS°(M),

([ [l dvg)” < K2 [ IVultde; (9.9)
M M

Since (M, g) is locally isometric to (M, §), (9.9) implies that (2.2) is locally valid on (M, g). By
Proposition 9.1, with B, = 0, this implies that (2.2) is valid on (M, g). As a remark, the same
argument leads to the same conclusion if K, is a nonpositive constant since (9.8) is true for the
hyperbolic space and the Euclidean space. As another remark, the same argument leads to the
same conclusion if we only assume that a local n-dimensional Cartan-Hadamard conjecture is
true on (M, §).

10 The 3-dimensional case

We prove in this section the first part of Theorem 4.1, namely that (2.2) is always true in
dimension 3. The particular case where the manifold we consider is conformally flat is easy to
handle. The result is there a straightforward consequence of the following inequality obtained
by Brezis and Nirenberg [7] (see also Brézis and Lieb [6]): for © a smooth bounded domain in
IR?, and for any u € C§°(Q),

a3 < KslIVull3 — X2l (10.1)

where || stands for the Euclidean volume of €, and A > 0 explicitly known does not depend
on Q. If ¢ stands for the Euclidean metric, and (M, g) is conformally flat, then for any z in
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M, there exists r, > 0, and ¢, a smooth positive function on M, such that in some chart at x
whose domain contains Q, = B,(r.), £ = ¢, *g on Q,. As one can easily check, for u € C5°(Q,),

1
/M |V (up,) Pdr = /M |Vul*dv, + 3 /M Syu*dv,

where S, stands for the scalar curvature of g. Coming back to (10.1), for any u € C§°(€2,),

6 1/3 o [ U
(/Mudvg) + A //Mgdvg

T

1
S K3 /M |VU‘2d’Ug + §K3 /M Sgu2dvg
Choosing r, > 0 small enough such that
1
)\|Qx|_2/3(max <p;4) > gKg(mang)

one then gets that for any x € M, there exists €2, an open neighborhood of x such that for any

u e CP(8y,), s
(/M u6dvg) < Kj /M |Vu|?dv,

Thanks to Proposition 9.1, this proves that (2.2) is always true in dimension 3 when the
manifold we consider is conformally flat.

Now we prove the first part of Theorem 4.1, namely that (2.2) is always true in dimension 3,
in the more difficult case where the manifold is not necessarily conformally flat. We follow the
original reference Druet-Hebey-Vaugon [19], but mention that a much simplier argument exists
thanks to the more recent Druet [14] or Johnson and Morgan [28]. As when proving that the
Sobolev-Poincaré inequality is localisable, we proceed by contradiction. We assume therefore
that for any a > 0,

inf  I,(u)

< — 10.2
H?(M)\{0} ( K (102)

where [, is as in section 7. Hence the results of sections 7 and 8 hold. As in section 7, (10.2)
leads to the existence of a minimizer u, € HZ(M), u, > 0 and of norm 1 in LS(M). If pu,
stands for the above infimum, one has that

Agug + a(/ UadVy)Se = ot (E,)
M
where %, € L>°(M) is such that 0 < ¥, < 1 and X,p = ¢ for any ¢ € H?(M) having the

property that |¢| < Cu, on M for some constant C' > 0. Moreover, u, is in C'* for any
A € (0,1), and the sequence (u,) is bounded in HZ(M). We also have that,

, 1
Jim g = e (10.3)
and
lim af|ual|f =0 (10.4)

a——+00
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Moreover, we may assume that (u,) has one and only one concentration point xy, we may
assume that for any 6 > 0,

li Sdv, =1 10.5
amstso Bay (8) ol (10.5)

and we may assume that
Uq — 0 in C)(M\{x0}) (10.6)

as a goes to +o00.
We let z, € M and A\, € IR be such that

Ue(Ta) = [|Ualloo = )‘;1/2

According to what we just said, z, — x¢ and A\, — 0 as a — +o0. By (10.4), noting that

1= [luallg < luallScllualls
one gets that
lim a2 ||lugly =0 (10.7)

The proof now proceeds in several steps.

STEP 1. We claim that for any R > 0,

lim wdv,=1—¢ 10.8
a——+400 Bay, (RA) a™"g £ ( )

where eg > 0 is such that ep — 0 as R — +oo. We let exp, be the exponential map at z,.
There clearly exists 4 > 0, independent of a, such that for any «, exp, is a diffeomorphism
from By(d) C IR* onto B, (8). For x € By(\;'9), set

Jo(x) = (exp}, 9)(Aaz)
Ui (T) = )‘i/zua(eXan(Aax))

Yo = Xal(exp,, (Aat))
As one can easily check, 5 B
Ng, i + allua| 12 Ea = pa (Ea)

Moreover,
Ui (0) = [|talloc =1 (10.9)

and if ¢ stands for the Euclidean metric of IR?,

lim g, =¢ in C*(K) (10.10)

a——+00

for any compact subset K of IR®. By (10.7), (10.9), and theorem 8.24 of Gilbarg-Trudinger
[22], (@) is equicontinuous on any compact subset of IR®. By Ascoli’s theorem, one gets the
existence of some @& € C°(IR?) such that for any compact subset K of IR?,

lim @, =@ in L¥(K) (10.11)

a— 400
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Clearly, 4(0) = 1 and @ # 0. An easy assertion to check is that & € Hg | (IR®), where HZ,(IR%)
stands for the completion of C$°(IR?®) with respect to

lullug, =/ [, IVuPds

Indeed, let n € C5°(IR*), 0 < n < 1, be such that n = 1 in By(§/4) and n = 0 in IR*\ By(§/2).
We set 1o (2) = 1), and
Pa () = na(2)ia(1)

Then, ¢, € CA(IR?), and ¢, — @ in L®(K) for any compact subset K of IR®. Clearly, there
exists C' > 0 such that for any «,

Ieall, < C [ 1Vpaldu,
< C/ 2|V iia|?dv, +C>\2/ V()| ?a2 dv;
— R3 a o Ja a R3 (€9 a”Yga
On the one hand,
/ @ dvg, = \,? u?dv,
Bo(0Xa") Bz (9)

On the other hand,

20~ |2 =12
Uo | dvs,. < / Ue|“dvs
J Pelie g, < [ i,
= / |Vug|*dv,
Bl‘a((g)

Hence, (¢,) is bounded in HZ,(IR?), and since HZ, (IR”) is reflexive, @ € HJ | (IR®). This proves
the above assertion. By passing to the limit as o goes to +o0 in (E,), according to (10.3),
(10.7), (10.10), and (10.11), one now gets that @ is a solution of

Al = L (E)

By Caffarelli-Gidas-Spruck [8], or also Obata [32],

3K )1/2

U0 = (555, + o

since @(0) = 1. Noting that @ is of norm 1 in L°(IR?), and that for any R > 0,

/ uldv, = / al dvg,,
Bz (RAa) Bo(R)

one gets that
lim uldv, =1 — / wSdx

a—+00 /B, (RAa) R*\Bo(R)

Clearly, this proves (10.8) and the claim we made in step 1.
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STEP 2. We claim that there exists C' > 0, independent of «, such that for any «a, and any
x?

dy(Ta, ©)Puq(z) < C (10.12)
where d, stands for the distance with respect to g. In order to prove such a claim, set

1/2

vo(T) = dg(Iaa ) ua ()

and assume by contradiction that for some subsequence,

lim ||v|lee = +00 (10.13)

a——+00

Let y, be some point in M where v, is maximum. By (10.6), y, — o as a — +o0o, while by
(10.13),

d Ay J

lim 4y (s Ya)

a—+00 )\a

= 400 (10.14)
Fix now 0 > 0 small, and set
Qo = ua(ya)26xp;al (Bia(9))

For x € Q,, define
Ua() = ta(Ya) " talexpy, (ta(ya) 1))

and
ha(w) = (expy, 9)(ta(ya) 2)
Clearly,
Jim ho =¢ in C%(By(2)) (10.15)

Moreover, as one can easily check,
Ap, Vo < a0 (10.16)

Since v, (ya) goes to +00 as a goes to +00, and together with (10.13), one gets that for « large,
and all z € By(2),

dy(Tas Ya) (10.17)

|~

dyg(Tas €Ty, (ua(ya)_2x)) >
This implies that

\/ﬁdg(xm ya)_1/2ua(ya)_lva(expya (Ua (ya)_2:)§))
\/ﬁdg(xm ya)_l/2ua(ya)_1va (ya)

Vo ()

IAIA

so that for « large,
sup  Uq(z) < V2 (10.18)
w€B0(2)
By (2.14) and (2.17), given R > 0, and for « large,

Bya(2ua(ya)_2) ﬂ B, (RA\y) =10
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Noting that

/ dvy, = / uldv,
Bo(2) By (2ua(ya)~?)

and together with (10.8), one gets that

1i Sdv, =0 10.19
a—1>r-l{loo By (2) ValUha ( )

By (10.15), (10.16), (10.18), and (10.19), and the De Giorgi-Nash-Moser iterative scheme, one
gets that

lim sup 0,(x) =0
Q=+ 2By (1)

But 9,(0) = 1, so that (10.13) must be false. This proves (10.12) and the claim we made in
step 2.

STEP 3. We prove the result, showing that (10.2) leads to a contradiction. We let § > 0
small to be fixed later on, and for any «, we let 1, € C§°(B,,(49)) be such that 0 < n, <1,
Ne = 1 in B, (29), and |Vn,| < C/§. Here, and in what follows, C' denotes a constant
independent of o and §. By Brezis and Nirenberg [7], inequality (10.1), and passing through
geodesic normal coordinates,

6 )"’ / 2 )‘/ 2
=K 52 10.2
(/Bm(%) uadz) =% o a0) [V (atia)[gde 52 Jp.. (45)(%%‘) dx (10.20)

where A > 0 does not depend on o and . When confusions are possible, we write |.|¢ and |.|, to
specify the metric with respect to which norms are taken. Starting from the Cartan expansion
of g in such coordinates,

IV (nata)l; < (1+ Cdg(za,2)*)|V (naua)l;
and
(1-— Cdg(:ca,:c)2)dvg <dr<(1+ C’dg(:)sa,:c)2)dvg

Hence,
/Bm(zw) |V (1atta)|Fd < /B | )(1 + Cdy(Ta, 7))V (Natta) [2dvg (10.21)

a

On the one hand,

C
Y (naus)2d </Va2d —/ 2
/. g IV Omliey < [ [Vucliog g [,
C

+— Ug | Vg |dv
0 JM\Ba, (26) | vy

Multiplying (E,) by u,, and integrating over M, gives

2 < — / 2
/Baca(4(5) |v(/)70cua)|gdvg S Ha O{( Muadvg)

C

C
+—/ uidv + — Ue| Vg | dv
02 JM\B,,, (26) 08 Jan\B., (25) | oy

(10.22)
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On the other hand,

dy (2, 2)*|V (atta)|jdvg < C 2d
L, gy ol IV oy <C g

(10.23)

+2 2\Vuu|?d, (2o, x)*dv
[ eIVl (. 2)

Integrating by parts, and according to (E,),

2 2 2 2.2,6
L, oy Tl tal 3y (0, ey < C [y, )by

c AVual.d 0/ 24 ,
+ B, (25 )u |V | dvg + S udvg, (10.24)

+C n2udv,
Bug (49)

By (10.12),

dy(Ta,2)*n*uldv, < C 2d 10.25
~/Bgca(45) g(aj ) naua Ug — Bxa(46) naua Ug ( )

Combining (10.23), (10.24), and (10.25), one may write that
2 2
[ ol a P ey < [ e

C
U | Vg | dv, +

(10.26)
< 9
0 JM\Ba, (26) 0% JM\B.., (2)

2
udvg

Independently,

/ uldr > / uldv, — C dy(T0, 2)*udv,
BCCa (26) Bxa (26) BCCa (26)

so that, again by (10.12),
/ ubdr > uldv, — C u?dv,
Bxa (26) BCCa (26) Bxa (26)

For « large, noting that B,,(d) C B,_(20), one gets from (10.5) and the fact that ||uy|ls — 0
as a — 400, that the right hand side in this inequality is positive. Since it is also less than 1,

(/ ugdas)l/?) > / uldv, — C uZdv,
BCCa (26) BCCa (26) BCCa (26)
and 3
6 >1_/ 6 dv, — C 24 10.27
(/BM(%) ta I) - M\Ba,, (25) Hal Ba,, (45) ety ( )
By (10.2), (10.20), (10.21), (10.22), (10.26), and (10.27), one gets that

C
K/ d 2</ 54 +—/ 29
ks M v)” < M\ Ba,, (26) Yl T 52 M\Ba,, (26) Ually

C A
= | Vata]dv, + (C — 2 / 2
*5 M\Bza(26)u [Vta|dvy + ( 52) Ba,, (49) Tattadlty

(10.28)
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We fix now § > 0 sufficiently small such that

A
C’—§<0

Noting that B,,(d) C B,,(20), and writing by Hélder’s inequality that

/ Ua| Vg |dv, < \// ugdvg\// |Vug|?dv,
M\ By (25) M\ By, (25) M\ By (26)

one gets with (10.28) the existence of some constant C' > 0, independent of «, such that

6 2
0K < fM\BzO(cS) Uadvg CIM\BZO(J) Ugdvg

N (fM uadvg)2 (fM Uadvg)Z (10 29)
+C(fM\Bzo(5) Uidvg)lﬁ (fM\BzO(cS) |Vua|2dvg)l/2
(fM uadvg)2 (fM uadvg>2

As in the proof of Proposition 9.1, see (9.5) to (9.7), the right hand side in (10.29) is bounded
by some positive constant independent of a. Since the left hand side of (10.29) goes to +o0
as « goes to 400, we get a contradiction. This proves that (2.2) is true on any 3-dimensional
manifold.

11 Negative and nonpositive scalar curvature

We start with the proof of the second part of Theorem 4.1 and of the first part of Theorem 4.4,
namely that when n > 4, (2.2) is true and (2.3) possesses extremal functions on any smooth
compact Riemannian n-manifold of negative scalar curvature. Then we prove the second part
of Theorem 4.2, namely that when n > 4, (2.2) is true on any smooth compact conformally flat
Riemannian n-manifold of nonpositive scalar curvature.

11.1 Negative scalar curvature

Suppose first that (2.2) is not true. Let oy = +00. Then, for any a € (0, ap),

inf I,(u) < —
H3(M)\{0} () K,

where I, is as in section 7. Suppose now that (2.2) is true and let oy = By(g)K,!. By the
definition of By(g), for any a € (0, ap),

inf I,(u) < —
H?(M)\{0} () K,

By section 7 we get in both cases that there exist u, € HZ(M) and %, € L>®(M), 0 <3, <1,
such that for a sequence («), a < a, converging to ay,

Aguy + </ uadvg) Yo = ,uauf:_l (11.1.1)
M
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and
v, =1 11.1.2
/ ua Ug ( )

where o, < K;!is the infimum of I,. Moreover, ¥,p = ¢ for any ¢ € HZ(M) such that
|| < Cu, for some constant C' > 0. As already mentioned, if oy = +00, we necessarily have
that
. 2 o

alLIEO Muadvg =0 (11.1.3)
On the other hand, let us assume that g = By(g)K,; ! and that (11.1.3) does not hold. Then,
up to a subsequence, u, — u in HZ(M) and u, — w in L*(M) as a — ap, where u € HZ(M),
u Z 0. Up to another subsequence, we may also assume that pu, — p as a — «ay. We claim
now that u is an extremal function for (2.3). Indeed, since 0 < ¥, <1,

alLIgo - Yo (Ug —u)dv, =0
and we also have that [, Youadv, = [ uadv, and [, uadvg, — [y udvg as o — o. It follows
that
lim [ Y, udv, = /M udv,

a—ao Jpp

Multiplying (11.1.1) by u, integrating over M, and passing to the limit as o — g, we then get

that 2
/ |Vul*dv, + ag (/ UdUg) = ,U/ u® dv,
M M M
Hence,
1 2 2 N -
1 S [VulPdvy + ao g{g{udvg) <) (/ .2 dvg) (11.1.4)
Ky, (Jas u?"dvy) M

Since A < Krjl and
/ u” dv, <1 =liminf [ w2 dv,
M

a—ao  Jpp
it follows from (11.1.4) that 4 = K ;' and ||ul|s~ = 1. In particular, u is an extremal function
for (1.4), and the above claim is proved. Summarizing, the proof of the second part of Theorem
4.1 and of the first part of Theorem 4.4, namely that when n > 4, (2.2) is true and (2.3)
possesses extremal functions on any smooth compact Riemannian n-manifold of negative scalar
curvature, reduces to the proof that (11.1.3) is impossible.

We proceed by contradiction. We let (M, g) be a smooth compact Riemannian n-manifold
of negative scalar curvature, n > 4, and we assume that for any a € (0, ap),

1
inf  I,(u) < — 11.1.5
Hf(ﬁl)\w} () K, ( )
and that
lim [ w’dv, =0 (11.1.6)
a—oo )

where o € (0, +00] is either +o0 if we want to prove that (2.2) is true, or By(g)K,, " if we want
to prove that (2.3) possesses extremal functions. We split the proof into different steps. The
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two first steps are the n-dimensional versions of the estimates we proved when dealing with the
3-dimensional case.

By (11.1.5) the results of sections 7 and 8 hold. As in section 7, (11.1.5) leads to the
existence of a minimizer u, € HZ(M), u, > 0 and of norm 1 in L? (M). If y, stands for the
infimum in (11.1.5), one has that

Ayug + a(/ Uadvy) Yy = pou’ ™ (Ea)
M
where 3, € L>®(M) is such that 0 < ¥, < 1 and X,p = ¢ for any ¢ € HZ(M) having the

property that |¢| < Cu, on M for some constant C > 0. Moreover, u, is in C'* for any
A € (0,1), and the sequence (u,) is bounded in HZ(M). We also have that,

. 1

and
lim al|ua||] =0 (11.1.8)
a—o

Moreover, we may assume that (u,) has one and only one concentration point xy, we may
assume that for any ¢ > 0,

lim u? dvy, =1 (11.1.9)

a—QQ0 Bzo (5)

and we may assume that
Uq — 0 in C)(M\{xo}) (11.1.10)

as a goes to ay.

We let z, € M and A\, € IR be such that
ua(xa) = HuaHoo = A;(n_z)ﬂ

According to what we just said, z, — x¢ and A\, — 0 as & — ap. By (11.1.8), noting that

1= [|uallz < fluall% luall
one gets that
lim a2 ||lug |, =0 (11.1.11)
a—aqg

As already mentioned, the proof now proceeds in several steps.
STEP 1. We claim that for any R > 0,

lim utdv, =1—ep (11.1.12)
a=00 J By (RAa)

where e > 0 is such that e — 0 as R — +oo. We let exp, be the exponential map at z,.
There clearly exists 4 > 0, independent of a, such that for any «, exp, is a diffeomorphism
from By() C IR" onto B, (8). For x € By(\;'d), we set

Ga(2) = (exp2, 9) (Maz) . flalr) = Aot (exp,, (A1)
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and Yo (z) = S (exp% ()\ax)). It is easily seen that

nt2 - .
DG, Uy + 0o’ (/ uadvg> Yo = uaﬂi -1 (11.1.13)
M
Moreover,
Ua(0) = |tg|loo = 1 (11.1.14)

and if ¢ stands for the Euclidean metric of IR",

lim g, = ¢ in C*(K) (11.1.15)

a—ag

for any compact subset K of IR". Thanks to (11.1.11) and (11.1.13)-(11.1.15), we get by
standard elliptic theory, as developed in Gilbarg-Trudinger [22], that there exists some @ €
C(IR™) such that for any compact subset K of IR",

lim i, =@ in CY(K) (11.1.16)

a—ag

Clearly, 4(0) = 1 and @ # 0. Moreover, it is easily seen that @ € Hg,(IR"), where Hj (IR")
is the homogeneous Euclidean Sobolev space of order two for integration and order one for
differentiation. By passing to the limit as « goes to ap in (11.1.13), according to (11.1.7),
(11.1.11), (11.1.15), and (11.1.16), we get that @ is a solution of

1 5
21

By Caffarelli-Gidas-Spruck [8], and also Obata [32],

n—2

. 1 oz
u(zr) = <1—|—714|1’|2> (11.1.17)

where A™! = n(n — 2)K,, since 4(0) = ||@||c = 1 by (11.1.14) and (11.1.16). Noting that @ is
of norm 1 in L?"(IR™), and that for any R > 0,

J,

lim ui*dvg =1- / ¥ dx
@720 JByq (RAa) R™\Bo(R)

2% ~ %
u;, dv, = / u;, dvg,
(RAa) ) I

T

we get that

This proves (11.1.12).
STEP 2. We claim that there exists C' > 0, such that for any «, and any =z,

dy(Ta, 1) 2 ug(z) < C (11.1.18)

where d, is the distance with respect to g. In order to prove this claim we set

1

Vo () = dg(Iaax)%_ Uo ()
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and assume by contradiction that for some subsequence,

lim ||va|lee = 400 (11.1.19)

a—ag

Let y, be some point in M where v, is maximum. By (11.1.10), y, — x¢ as & — ap, while by
(11.1.19),
dg(xom yoc)

a

lim

a—Q0

~ foo (11.1.20)

Fix now 0 > 0 small, and set

2

Qo = ua(ya) 72 expy, (Bz, (0))

For x € Q,, define

Oa() = ta (o) "o (exD,,, (ta(y0) 7 77))

and
ha(@) = (exp}, 9) (Ualye) 722)

It easily follows from (11.1.19), since M is compact, that u,(y,) — +00 as o — «g. Hence,

lim hy =& in C? (By(2)) (11.1.21)

a—Q0

where ¢ is the Euclidean metric. Independently, we have that
Ap,Ba < g2 7! (11.1.22)

Since v,(ya) goes to +o0o, for a close to ag, and all x € By(2),

d, (:Ea,expya(ua(ya)_%:v)) > %dg(xa,ya) (11.1.23)
This implies that
Ta(2) < 287y (Tar Ya)' " Fta(Ye) "M (€30, (Ual(ya) T2 1))
< 287y (a, Ya) ' B Ua(Ya) T V0 (Ya)
so that for « close to «p,
sup o (x) <2271 (11.1.24)

x€By(2)
By (11.1.20) and (11.1.23), given R > 0, and for « close to ay,

By, (2a(Ya) " 72) () B (RAs) = 0 (11.1.25)

Noting that

/ o2 dvy, = / 9 ui*dvg
Bo(2) Byq (2ua(ya) ™2)

it follows from (11.1.12) and (11.1.25) that

lim 2" dvp,, = 0 (11.1.26)

a—QQ0 BO (2)

33



By (11.1.21), (11.1.22), (11.1.24), (11.1.26), and the De Giorgi-Nash-Moser iterative scheme we
get that

lim sup 0,(z) =0
a—ao wEBo(l)

But 9,(0) = 1, so that (11.1.19) must be false. This proves (11.1.18).
STEP 3. We claim that given R > 0,

sup dy(T0, )2 ug(2) = er(a) (11.1.27)
2€M\Byq (RAa)

where d, is the distance with respect to g, and RliIJrrl lim er(a) = 0. In order to prove this
— 400 dX—

claim we set
val2) = dyl0, 2)F g (2)
and proceed once more by contradiction. Then there exists y, € M and ¢y > 0 such that

dg(zaa ya)

«

lim =400 and v,(Ya) > €0

a—ag

As above, we fix § > 0 small, and set

2

Qo = Ua(Ya) ™2 exp, By, (9))
For x € Q,, we define

Oa() = ta(Yo) ""tta (exDy, (Ua () 7 22))

and
ha(w) = (exp}, ) (ta(ya) 722)

2

Once again Ay, 0, < 11,02 ' As when proving (11.1.18), for any = € By(3e5 ),

1
dy(Ta,20) > idg(xau Ya)

and
U () = ua(ya>_lva(za)dg(xav Za>1_%

where z, = exp, (ua(ya)_%z). It follows from (11.1.18) that
Ba(z) < C227 ey

Noting that for R > 0, and for « close to ag,

1 -2 e
B,, (555 Ue (Ya) n?) ﬂBwa (RX\o) =10

we conclude as when proving (11.1.18) that (11.1.27) holds.
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STEP 4. We claim that if oy = 400, then, for any 6 > 0,

S u?dv
i 2M\Beo (9) 7 _ 0

azao [y ugdug

(11.1.28)

In other words, we claim that L?-concentration holds for u, in any dimension when ay = +00.
In order to prove this claim we let 0 < 1 < 1 be a smooth increasing radially symmetric
function with respect to xy such that n = 1 in M\B,,(d) and n = 0 in B,,(§/2). By the De

Giorgi-Nash-Moser iterative scheme, and by (11.1.10),

2
usdv <C’/ uadv/ U dV
/M\Bzo(6) om0 =0 g M?7 g

where Cs > 0 is independent of «. Independently, thanks to (£, ), we have that

1 «
ad / Ocd = _/ «a «a -1 A «a d
/Mu Yy M77u Y9 = 3 M??u (M Ug g ) Yy

Integrating by parts,

/ nuaAguadvg:/ n\Vua\2dvg+/ (VnVu,) uadv,
M M M

(11.1.29)

(11.1.30)

where (VnVu,) is the pointwise scalar product with respect to g of Vi and Vu,. Since

|(VnVu,)| < |Vn||Vue|, and by Holder’s inequalities,

VnVug,)| ugdv, < uZdv / Vug|2dv
[ V) wadey < [ gmwo(é)\%w 24,

Coming back to (11.1.29) and (11.1.30), we get that

1 2 Ha 2*
— uzdv, < —/ uz dv
Cs /M\Bmo(é) @y =7 Jyp M @Y

1
+— /uadvg\// |Vug|2dv,
o\ Ju M\Bay (5/2)

[omidv, = [ (e,
M M

Noting that

it follows from (11.1.10) that
hm fM nui d'Ug

=0
a—+oo [ u2dv,

Then, the proof of (11.1.28) reduces to the proof that for 6 > 0 small, there exists C' > 0,

independent of «a, such that

/ | Vua|*dv, < C/ u?dv,
M\Bazy (8) M
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As above, let 0 < 7 < 1 be a smooth function such that n = 1 in M\B,,(8) and 1 = 0 in
B,,(0/2). Multiplying (E,) by n?u, and integrating over M, we get that

/ nz\Vua\2dUg + 2/ Nue (VNVu,) dvg < ,ua/ n2u(2;dvg
M M M

Therefore,

/n2|Vua|2dvg < C/ |77Vua\uadvg—|—ua/ n*u® dv,
M M M

C\// ugdvg\// n?|Vug|?dv, +,ua/ n*u® dv,
M M M

IN

and we get that

Jur 772|Vua|2dvg <C Jar I Vue|*dv, 4 Jur nzugdvg
S u2dv - S u2dv “ [y utdu
M Yavg M Yavg M “a™vg

Here again, by (11.1.10),
Ju nu:‘fdvg

li =0
so that 2T 2d
lim sup Ja [Vl “dv, < C?

a—+00 fM uadvg
In particular, (11.1.31) holds, and this completes the proof of (11.1.28).
STEP 5. We claim that if ay < 400 and n > 4, then, for any 6 > 0,

lim fM\BzO () uidvg _

11.1.32
aza [y uddu, ( )

In other words, we claim that L?-concentration holds for u,, in dimension n > 4 when oy < +00.
In order to prove this claim, we proceed as follows. We clearly have that

/ uZdv, = / Yauldo,
M\ Bz (9) M\Bz, (9)

Then, by the De Giorgi-Nash-Moser iterative scheme, and by (11.1.10),

2
/ uldv, < C/ Yadyy (/ uadvg)
M\By (6) M M

where C' > 0 is independent of a. Integrating (E,),

a/M Uady, /M Sadv, = fta /M w2y, (11.1.33)

By (11.1.33), and (11.1.7), we then get that

/ uidv, < C'/ uadvg/ uZ v,
M\Buzq (8) M M
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and hence that

/M\Bzo(5) Updvy < CW/M uZ ~tdv, (11.1.34)

where C' > 0 is independent of «. First, we suppose that n > 6. Then 2* — 1 < 2, and we get
by Holder’s inequalities that

*

2
3—2% 5
2* 1 == 2
U dv, <V, 2 </ U dv)
/J;/[ e g =Yg a9

where Vj is the volume of M with respect to g. Coming back to (11.1.34) gives

*

2%
/ uldv, < C (/ uidvg> ’
M\ By (6) M

Since 2* > 2, and ||ua||2 — 0, we get that (11.1.32) holds when n > 6. Now we suppose that
n =>5. Then 2 < 2* —1 < 2% and we get by Holder’s inequalities that

*_ 2*171 2 * 12;*S
() = (fzae)! ([ )

S
S
Coming back to (11.1.34), and since ||uq||2+ = 1, we get that

5
/ uidv, < C (/ uidvg> '
M\ By (6) M

Here again, ||uy|l2 — 0. This proves (11.1.32) when n = 5. At last, we suppose that n = 4.
Then, 2* = 4. We have that

where

S =

u3 dv /. u3 dv
L‘gg S ||uaHL°"(M\Bxa (8)) / ug{dvg + Bz, (9) - g
\/ S uZdvg M \/ fBza (5) ugdvy
fBO oA u dvga

\/ fBo(é)\ uzdvg,

where ¢, — 0 as @ — «ap, and u, and g, are as in step 1. For any R > 0, we get by the
Cauchy-Schwarz inequality and (11.1.12) that

~3 ~3 ~
o dv; < usdv; + e / w2 dv;
/BO((S)\QI) a®lga = Bo(R) © Jor R\/ Bo(orsl) @ Jo

where eg — 0 as R — +o00. It follows from these equations and (11.1.15) that for any R > 0,

< et

lim sup Tu uzdvg fan w’dx
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where 4 is as in (11.1.17). Noting that

lim W2dx = 400
R—+o00 Bo(R)

when n = 4, this proves (11.1.32) when n = 4.

Thanks to the estimates of steps 1 to 5, we are now in position to conclude the proof that
when n > 4, (2.2) is true and (2.3) possesses extremal functions. As already mentioned, the
proof reduces to showing that (11.1.5) and (11.1.6) lead to a contradiction.

STEP 6. We claim that (11.1.5) and (11.1.6) lead to a contradiction. For § > 0 small, and
x € By(d), we set

ga(x) = exp} g(z) and va(z) = uq (exp,, (x))
We let also n be a smooth cut-off function such that n = 1 in By(6/2), n = 0 in IR™\ By(9),

|Vn| < C671, and |V?n| < C62, where, as in what follows, C' > 0 is a constant independent
of a and ¢. By the definition of K,

2*
vo)? dx <K/ v) |2da 11.1.35
([, ) Y (00 (11.1.39
We have that

/ IV (nva) Pdz < / Vo Avgdr + C5 2 vidr
Bo(6) Bo(9) Bo(6)\Bo(4/2)

and
Av, = Ay v, + (ng 5“)82]% ”F(ga)f]@kva

where A is the Euclidean Laplacian, §% is the Kroenecker symbol, and the F(ga) s are the
Christoffel symbols of the Levi-Civita connection with respect to g,. Hence,

/ IV (nuy) Pdz < / NV, Vadr + C52 v2de
By () By () Bo(6)\Bo(4/2)

+/ n*va(g? — 870 vadx — / 0693 T (ga)f:Opvads
By () Bo(5)
Integrating by parts, and thanks to (E,), we then get that

1 \
Va2d<—/ 22d—/ad/ 20,d
/Bo(6>| (mva) =R Jae T T e gy T

+C52 v2idr — n* (g — §7)00,,0jv4dx
Bo(6)\Bo(6/2) Bo ()

2 / ak (gir ga)?j) + @'jgg) n*vide

By (11.1.35), this implies in particular that

l
0< v do — </ (Nva)? dm)
Bo(9) Bo(9)

1 k i\ 2,2 11.1.36
55 L (O(95T (ga)ty) + D39 ) P02 ( )
-K, 0 (g7 — 6")0v,0jv0dz + CS 2 v2dx

Bo () Bo(6)\Bo(6/2)
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By (11.1.28) and (11.1.32),

v2de
lim IBO(‘”\BO“/? = (11.1.37)
aTao fBo(é) vadx

Similarly, since x, — p as @ — «p, the Cartan expansion of g gives that

‘ . . 1
lim (04951 (9a)55) + 0102 ) (0) = 55y(o)

a—ag

where S, is the scalar curvature of g. By (11.1.28) and (11.1.32) we then get that

Ok(9T(90)5) + 09 ) n*vade 1
fBO(é)( g ( ( )]) J )77 _ gSg(SL’o)‘f‘gé (11.1.38)

lim sup
a—ag fBO (8) ’Ug{d,f

where 5 — 0 as 6 — 0. Independently, we claim that when S,(zy) <0,
2,2 2 >

v2 dr — vo) 2 dx)”

lim sup fBo(é) n (fBO(a) (17Va) )

<es (11.1.39)
a—aq fBO(5) ’Ugldl'

where €5 — 0 as 6 — 0. By Holder’s inequalities we indeed do have that

2
*

2
/ v de — </ (nva)z*dx>
Bo(9) Bo(9)
(2*—2)/2* 2/2*
< / v2 dx —1 / Vg 2*alm>
- (( Bo(o) ) ) < ")

and thanks to the Cartan expansion of g,
1 o
dx < (1 + aRij(xa)xlx] + C\:L’|3) dvg,

where the R;;(z,)’s are the components of the Ricci curvature at x, in the exponential chart.
It follows from these equations that

2

5%
2, 2% 2%
v, dr — / V)" dx
/30(5)7] <Bo(5)(n ) )
2/2*

1_'_66 92 9ox o*
< Xates [ dvg, | ([ (ua)*d
< (e [ e an ) (oo

Xy = Rii(x, / :Eixjvf:dv N
e [ g

where

By (11.1.18) we have that

/ 2> dv,, < C / v2du,,
Bo(9) By ()
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and by (11.1.27) we have that for any R > 0,

R;:(x, / xixjvi*dv L e / Uidv N
() Bo(6)\Bo(RXa) I " JBos) g
where egp — 0 as R — +o00. Noting that
Rij(za) fBO(R,\Q) xi%’jvi*dvga _ Rij(x4) fBO(R) xixjﬂgjdvga
fBo(é) vadug, fBo(é)\gl) uzdvg,

where 1, and g, are as in step 1, and that

L 1. x
/ o'l de = —5”/ |z|?0* dx
Bo(R) n Bo(R)

where @ is as in (11.1.17) and the §%’s are the Kroenecker symbols, we get that

1 *
;;6 Xa + 56 fBo(5) |£L’|2’U§ dvga

lim sup

€s
2 >
a—aq IBO((S) UadUga

when Sy (z9) < 0. By (11.1.10) we also have that [5 (nve)? dz — 1 as a — ap, and, combining
these equations, we get (11.1.39). At last, we refer to Druet [15] for details, it can be proved
with (11.1.27), (11.1.28) and (11.1.32) that for any R > 0,

’fBO((S) 772 (Q(Zf - 5ij)aivaajvadz‘

lim sup
a—aq fBO(é) ’Ugld,f

<egp-+tes+ ¢ li L
S ER gs -y 1M sup -
Rn 4 a—aQ fB()((S)\,Zl) ugd’vga

where eg — 0 as R — +00, ¢5 — 0 as § — 0, and 4, and g, are as in step 1. Noting that by
(11.1.15) and (11.1.16),

lim inf Widvg, > | @ldx
a—ao JBy(6A51Y) Bo(R)

for any R > 0, where @ is as in (11.1.17), and that if n = 4,
lim ~ @dr = +o0
R—+00 J/Bo(R)

it follows that . -
fBo(5) n° (g — 6Y)0va0jvadx B

lim sup €5 11.1.40
a—aq IBO((S) Uid.flf ( )
where g5 — 0 as 0 — 0. Combining (11.1.36)-(11.1.40) we then get that
1
éKnSg(:co) +e5>0 (11.1.41)

where ¢5 — 0 as 6 — 0. Since Sy(zp) < 0, (11.1.41) is impossible, and the contradiction
follows. As already mentioned, this proves the second part of Theorem 4.1 and the first part
of Theorem 4.4, namely that when n > 4, (2.2) is true and (2.3) possesses extremal functions
on any smooth compact Riemannian n-manifold of negative scalar curvature.

As one can easily check, the above arguments give also that the set of the extremal functions
for (2.3) is compact, for instance in the C'-topology.
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11.2 Nonpositive scalar curvature

We prove the second part of Theorem 4.2, namely that when n > 4, (2.2) is true on any
smooth compact conformally flat Riemannian n-manifold of nonpositive scalar curvature. We
follow the lines of subsection 11.1 so that we can present L!-concentration. However, in this
specific case, an easier argument exists, based on localisation (Proposition 9.1 above) and
conformal invariance (see also Proposition 2.2 in Schoen and Yau [36]). We let (M, g) be a
smooth compact conformally flat Riemannian n-manifold of nonpositive scalar curvature, and
we assume by contradiction that (11.1.5) holds for all & € (0, +00). Then the results of sections
7 and 8 hold. As in section 7, (11.1.5) leads to the existence of a minimizer u, € HZ(M), uq > 0
and of norm 1 in L? (M). If p, stands for the infimum in (11.1.5), one has that

Agug + a(/ Uadvy) Yy = pou’ ™ (Ea)
M
where %, € L>°(M) is such that 0 < ¥, < 1 and X,p = ¢ for any ¢ € HZ(M) having the

property that |¢| < Cu, on M for some constant C > 0. Moreover, u, is in C'* for any
A € (0,1), and the sequence (u,) is bounded in HZ(M). We also have that,

, 1
and
lim allua||f =0 (11.2.2)

Moreover, we may assume that (u,) has one and only one concentration point xy, we may
assume that for any 6 > 0,

lim wdv, =1 11.2.3
a—-+oo Bzo(5) (e} g ( )

and we may assume that
Uq — 0 in CP(M\{xo}) (11.2.4)

as « goes to +00. As already mentioned, we necessarily have that

. 2 .

agr}rloo Muadvg =0 (11.2.5)

In particular the estimates of steps 1 to 5 of the preceding subsection hold. In addition to these

estimates, we claim that L!'-concentration holds also for the u,’s. In other words, we claim
that for any 6 > 0,

. J M\ B, (9) Uadug
lim =
a—+00 fM uadvg

(11.2.6)

In order to prove this claim we let 0 < 7 < 1 be a smooth function such that n = 1 in M\ B, (6)
and n =0 in B,,(0/2). We have that

/M U dvy /M\Bzo(é) Ugdv, < /M Uadvy /M Nadv, (11.2.7)
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and as when proving the estimate of step 4 of the preceding section, we get by the De Giorgi-
Nash-Moser iterative scheme that

1 “
ad / ad = _/ o o =1 A o d
/Mu Vg [, Miadvg = — | nu (,u uz JU ) v,

1 o 1
< e /M nuZ dv, + - /M [(VnVug)| uadv, (11.2.8)

2 C
< €a (/ uadvg) + —\// \Vua|2dvg/ U dvy
M a \| JM\By(5/2) M

where £, — 0 as @ — 400, and C' > 0 is independent of . The proof of (11.2.6) then reduces
to the proof that for § > 0 small, there exists C' > 0, independent of «, such that

2
Vug|?d <C(/ od > 11.2.9
Jo gy Vel s < O (f ey (11.2.9)

As above, let 0 < 7 <1 be a smooth function such that n = 1 in M\B,,(8) and = 0 in
B,,(6/2). Multiplying (E,) by n*u, and integrating over M, we get that

/ nz\Vua\2dUg + 2/ Nue (VNVu,) dvg < ,ua/ n2u(2;dvg
M M M

Therefore, by the De Giorgi-Nash-Moser iterative scheme,

/nz\Vuanvg < C/ \nVua|uadvg+ua/ n*u? dv,
M M M

< C'/ uadvg\// 7)2|Vua\2dvg+,ua/ 7]2ui*dvg
M M M

and we get that

fM772|Vua|2dvg <C fM772|Vua|2dvg " Ju 772u<2x*dvg
(Jur Uadvg)2 B (Ju Uadvg)2 Ol(fM uadvg)Q

By the De Giorgi-Nash-Moser iterative scheme that we apply once again,

Ju 77“?: dvy

IMTa T9 )
a0 (fM uadvg)

and it follows that

2 2d
lim sup Jg 17| Vtko 21)9
a——+00 (fM uadvg)

In particular, (11.2.9) holds, and we get from (11.2.7) and (11.2.8) that (11.2.6) holds also.
This proves that L'-concentration holds for the u,’s, and the above claim.

<(C?

We proceed now with the proof that when n > 4, (2.2) is true on any smooth compact
conformally flat Riemannian n-manifold of nonpositive scalar curvature. In other words, we
proceed with the proof that (11.1.5) leads to a contradiction. Since (M, g) is conformally flat,
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there exists p € C*°(M), ¢ > 0, such that § = ¢ 2 g is flat around zy. Set vo = ¢ 'uq. By
conformal invariance of the conformal Laplacian,

_n+2 2% 1

n—2
e A— o "2 = I, 11.2.10
4(77, _ I)Sgu ) 2 2 HaU,, ( )

Agvq + <a /M Uadvgdy —

We let § > 0 be such that ¢ is flat in B,,(20), the ball with respect to g of center xy and radius
20, and we assimilate B,,(29) and § with By(2J) and &, where ¢ is the Euclidean metric. We let
also 0 < n <1 be a smooth cut-off function such that n = 1 in By(6/2) and n = 0 in IR™\ By(9).
By the defintion of K,,,

2

</Bo<6> (ea)” dz) 2*

< Kn/ IV (nva) |*dx (11.2.11)
Bo(9)

and we have that

/ IV (nvy) Pdz < / Ve Avadr + C v2dw
Bo(9) By () Bo(8)\Bo(6/2)

where C' > 0 is independent of . Hence, by (11.2.10), (11.2.11), and since S, < 0,

2
*

2% 2 9 _9*
)+ ak, [ e, [ od
</Bo(5) (Nva) a:) e} Mu Vg 30(5)17 0 ugdr

< ,uaKn/ v dr + C v2dx
Bo(6) Bo(6)\Bo(6/2)

(11.2.12)

On the one hand, p, /K, < 1. On the other hand, it follows from Holder’s inequalities that

20 de — (/ Vg 2z dx)
~/Bo(5) T Bo(5) (1va)

2 2

l=-5% 2%
< > g —1) ([ e
- <</Bo(5) fo x) ) ( Bo(«s)(m ) x)

/ v2 dr = / u? ™% dv; < / u? dv, =1
Bo(8) Buy (8) M

2
2%

Moreover,

and it follows that

(V)
x-|'°

aKn/ 2Ui*dx — </ Ve 2 da:) <0
a Bo(d) 1 Bo(9) (77 )

Coming back to (11.2.12), we then get that

aKn/ uadvg/ o  ugde < C vidr (11.2.13)
M Bo(d) Bo(6)\Bo(6/2)

We have that
/ o Y uade > _ Uadvg
Bo(9)
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for some § > 0 small, and by the De Giorgi-Nash-Moser iterative scheme, there exists C' > 0,
independent of «, such that for § > 0 sufficiently small,

/ vidaj < C’/ uadvg/ _ Updvg
Bo(6)\Bo(6/2) M M\ Bz (6)

By (11.2.13) we then get that

/ M\By,(8) Uadvy
fBzo (S) Uadl)g

while by (11.2.6), the right hand side of (11.2.14) goes to 0 as @ — +o00. A contradiction, so

that, as already mentioned, (2.2) is true if (M, g) is conformally flat and the scalar curvature
of g is nonpositive.

akK, <C

(11.2.14)

11.3 Arbitrary energies

In order to fix ideas, we let (7™, g) be a compact flat torus of dimension n > 3, and we consider
the following equation
Agu+ allul 2 =u? ! (E,)

where u € HZ(T™), u > 0, and ¥ € L>*(T"), 0 < ¥ < 1, are such that Yu = u, and where
a > 0. By standard regularity results, if (X, u) is a solution of (E,), then v € HY(T") for all
p > 1. In particular, u € CHP(T™) for all B € (0,1). We let

S, = {(Ea, Ug) 8.5 (Eq) holds}
and, following Hebey [26], we define the energy function E,, by

B, = inf « 11.3.1
(@)= it Jul (11.3.)
Noting that (1, (Vgoz)("_Q)/‘l) € S,, where Vj is the volume of 7™ with respect to g, we easily get

that E,,(a) < V' ~9/4nq(=2/1 " The above construction can be done on arbitrary compact
Riemannian manifolds (M, g). In this case, it easily follows from the test functions arguments
developed in section 6 and from Proposition 7.1 that F,,(«) < K;("_z)/‘l ifn>4and S, >0
somewhere. We prove here that the following proposition holds, and refer to the remark at the
end of this subsection for possible extensions of this result.

Proposition 11.1 Let (T, g) be a compact flat torus of dimension n > 3. Then

lim E,,(a) =400

a——+00

where E,, is the energy function defined in (11.3.1).

Flat torii are interesting since they can be seen as the limit case of manifolds of nonnegative
and nonzero curvature, a class for which, as already mentioned, the energy function is bounded.
We prove Proposition 11.1 in what follows. We proceed by contradiction, and thus assume that
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there exists a sequence (X4, uq) in S, such that |luql|2x < A for some A > 0 and all o. Letting
lia = [|tall2 e, we get that [|@als- =1 and that

Ayliq + |tin][1 20 = pat =} 11.3.2
g

where 1, = ||ua]|4/ =2 " In particular, p, < AY®™=2_ We also have that Soia = fia. As in
section 8, following standard terminology, we say that x € T™ is a concentration point for the
sequence (X, U, ) if for any § > 0,

lim sup 4% dvg > 0
a—+oo JBz(d)

Multiplying (E,) by @q, and integrating over 7%, we see that ||ia]1 — 0 as o — +oo. It
follows that (X,,@,) has at least one concentration point. We let S be the set of the concen-
tration points for (X, @,). Mimicking what we did in section 8, another possible reference is
Druet-Hebey-Vaugon [20], it is easily seen that the two following propositions hold: up to a
subsequence,

S ={xy,...,x,} is finite, and

o — 0in CL(T™\S).

In a similar way, mimicking what we did in subsection 11.2, we easily get that for any ¢ > 0,

(11.3.3)

. U dV
fi ST et (11.3.4)

a=too [, Uadug

where By is the union of the B,,(d)’s, i = 1,...,p. We also get that

/Tn\zsg (|Vua|2 +u )dvg <C </ uadvg>2 (11.3.5)

where C' > 0 is independent of . Concerning terminology, we refer to (11.3.4) as global L!-
concentration. Now we fix z; € §. Since g is flat, we can assimilate g with the Euclidean metric
¢ around z;. Given ¢ > 0 sufficiently small, we let 0 < n <1 be a smooth cut-off function such
that n = 1 in By(d/2) and n = 0 in IR"\ By(d). Thanks to the Pohozaev identity [33],

2/ kﬁk (Ntg) A(mla)dz +(n— 2)/ N ANty )dx < 0 (11.3.6)
B”L

Such an equation makes sense since @, € C*?, 0 < 3 < 1, and 4, € H;loc, p > 1. Integrating
by parts, we easily get that

/ . (xkﬁk (m)a)) A(niy)dr = /an n? (xkﬁkﬂa) At,dr + R(a)

(11.3.7)
/ e (iie)dz = / Pl Adadz + R ()
R™ R™

where

R.(a)] < 01/ , Vil d:)s+02/ a2dz (11.3.8)

Bo(6)\Bo(4/ Bo(6)\Bo(6/2)
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and C1,Cy > 0 are independent of a. We have that ¥,u, = U,. Thus, ¥, = 1 when 4, > 0.
Let f be a smooth function with compact support in By(2). Noting that the set of the z’s
which are such that 4,(z) = 0 and |Vi,|(z) # 0 is a hypersurface in 7™, and thus of measure
zero, we can write that for any k,

/ f(Ohia)Yadr = f(Onite) Lodx
{|Viia |20}

/{aa>o,|vaa;é0}

/ F(Ottn)da
{a>0,|Via|£0}

= Ol )dx
/{M#O}f( k)

It follows that for any smooth function f with compact support in By(26), and for any k,
/ F(Ohttn) Sad = / F(Ottn)da (11.3.9)
n B’n/

Thanks to (11.3.2) and (11.3.9),

/ 7 (¢ 0hita) Adade = i, / (2" 0ti)a% ~ldx — o / ladv, / (2 Oyt de

R" R" ™ R"
while, thanks to (11.3.2),
/ N U0 Aigds = ua/ nzﬁi*dz —a/ ﬁadvg/ Nt d
R™ R™ Tn R™

Integrating by parts,

n—2

Ak
2 dx

* 2 *
|t oia)id e = - [ (o) do
n R?’L B’!L

2*

and
/ ("0t )dw = —2 / 1(z*0n)iadz — n / Piiadz
n B”L Bn

Combining these equations, and thanks to (11.3.7), we get that
2/ (:Ek@k(nﬁa)) A(ntg)dr + (n — 2)/ Nia ANty )dx
R" R"

=(n+ Q)Q/TL Uadvy /an N ladr + Ri(a) + aRa(a) /TL Uadvy

where R;(«) is as in (11.3.8), and where, thanks to (11.3.3) and the De Giorgi-Nash-Moser
iterative scheme, Ry(«) is such that

IRa(a)] < Cs fad
Bo(6)\Bo(5/2)

where C3 > 0 is independent of ov. Coming back to (11.3.6), summing over the z;’s in S, and
thanks to (11.3.5), we have proved that for § > 0 sufficiently small,

2
a / iady, /B o, < 4 ( /T ] ﬂadvg) + Csa /T diadv, /T s, ol (11.3.10)
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where Cy, C5 > 0 are independent of «. In particular, it follows from (11.3.10) that

a IB(; ﬂadvg < C _'_ C afT7L\85 ﬁadvg
- ~ 7. =WY4 e
an uadvg an Uad’Ug

Letting o — 400 we then get our contradiction thanks to (11.3.4). This proves Proposition
11.1.

The above proof extends to compact conformally flat Riemannian manifolds which are scalar
flat. A possible example of such a manifold, which is not a flat torus, neither the quotient of a
flat torus, consists in the product of the unit sphere with a compact hyperbolic space of the same
dimension. In particular, if M is the class of compact Riemannian manifolds of nonnegative
and nonzero curvature, and if Oo2 M is its boundary with respect to the C?-topology, then
E,, is (uniformly) bounded in M, but unbounded on dc2 M. Independently, using global L3-
concentration instead of global L!'-concentration, and conformal invariance, it is easily checked
that a slight modification of the above proof gives that the conclusion of Proposition 11.1 still
holds for compact conformally flat Riemannian manifolds of dimension n > 3 and negative
scalar curvature. Open questions on £, can be found in Hebey [26].

12 Asymptotics when the scalar curvature is positive
somewhere

We prove the second part of Theorem 4.4. This is by far the most difficult part in Theorems
4.1 to 4.4. We separate this section into three subsections. The first subsection concerns the
study of a closely related problem in the Euclidean context. A test function type argument,
based on what is proved in subsection 12.1, is developed in subsection 12.2. The general case
of an arbitrary compact Riemannian manifold is treated in subsection 12.3.

12.1 The Euclidean case

Let B be the unit ball in IR", n > 4, and A = —div(V) be the Euclidean Laplacian. We let
C§°(B) be the set of smooth functions with compact support in B, and Hj ,(B) be the standard
Sobolev space defined as the completion of C§°(B) with respect to the norm |u|| = [|Vul|2.
Given a > 0 and B > 0, we define A\g by

[Vull3 — ofjull3 + Bllull}

A = inf 12.1.1
B e (B)\(0y || w3 ( )

For ¢ > 0 small, let us be the function of H§ ,(B) defined by

us(a) = (54 J2?) 2 = (5 4+ 1)

Taking the us’s as test functions, it is easily seen that for any B > 0, A\p < KLL On such
developments, we refer to Druet-Hebey-Vaugon [19] and Hebey [25]. Now we claim that the

following holds:
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(i) Ap is continuous in B and increasing in B,
(i) Ap — 1% as B — +o0.
Point (i) is easy to get. Just note that if B, = By +n, n > 0, then

2(2%—1)

)\Bl S )\BQ S >\Bl _'_ nVB >

where Vj is the volume of B. Concerning point (ii), let B > 0 be given. Since K,' is the
minimum energy for blow up, and Az < K, !, classical variational methods lead to  the existence
of a minimizer for Ag. In particular, we refer to section 7, there exists ug € C*°(B), § € (0, 1),

up > 0in B and up = 0 on 9B, such that
AUB —QUB+B||UB||1ZB = )\Bug_l (1212)

and [zu%dr = 1, where Xp € L>®(B) is such that 0 < Xp < 1 and Sgup = ug. Multiplying
(12.1.2) by up and integrating over B, we get that B|lug||? < Ap. As a consequence, ug — 0 in
LY(B) as B — +oo. This implies that blow up occurs as B — +o00, and thus that A\p — K !
as B — +o00. Points (i) and (ii) above are proved.

Given ¢ > 0 small, we let B. > 0 be such that

_1—5

AB. K

(12.1.3)

The goal in this section is to describe the asymptotic behavior of B, in terms of £ as ¢ — 0.
More precisely, we want to prove that

B 3

li = 12.1.4
220 (e 32w S
when n = 4, and
n+2
(n—4)(n+2) 4(n—1 ER
lim B.e 79 = C, <Ma> (12.1.5)
e—0 n— 2

when n > 5, where

o 2n(n + 2)w2+”
n — T 2n_ n
W2 (47=3n(n — 2)(n — 4)) 72

By standard symmetrization arguments, based on the co-area formula, functions in (12.1.1) can
be assumed to be radially symmetrical and decreasing. As above, we then get the existence of
a decreasing radially symmetrical function u, € C*°(B), § € (0,1), u. > 0 in B and u. = 0 on
0B, such that

1 - *
Kn6 v
and [z u? dz = 1. There, see section 7, 3. € L>®(B) is such that ¥, = 1 if u. > 0, and ¥. =0
if u. = 0. In particular, there exists r. € (0, 1] such that Suppu. = By(r.), where By(r.) is the
Euclidean ball of center 0 and radius r.. Then,

Au. — aue + Be||ue||12: = (12.1.6)

Y. = 1in By(r.) and ¥, = 0in B\By(r.) (12.1.7)
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and, as a consequence, u. is smooth around 0. Since for any B, Az < K !, we have that
B. — 400 as € — 0. Independently, multiplying (12.1.6) by u. and integrating over B, we see
that B.|ju.||? is bounded as ¢ — 0. By the preceding remark, this implies that ||u.||; — 0 as
€ — 0. Thus blow up must occur, and we are lead to the study of the asymptotic behavior of
the u.’s. A somehow similar problem was studied in Adimurthi-Pacella-Yadava [1]. This paper
was concerned with the standard Euclidean sharp Sobolev inequality with Neumann boundary
condition. As a starting point in the proof of (12.1.4) and (12.1.5) we prove weak estimates on
the u.’s.

12.1.1 Weak Estimates

We let p. > 0 be given by
1-n
u:(0) = [[uelloo = pre (12.1.8)
Then, . — 0 as € — 0. Since Au(0) > 0 and 3.(0) = 1, (12.1.6) gives that

1-2 ]_ — & _1-2
Bluclh < ape ? + i ke T
Thus,
1+2 2
Belfuellipe? < i (12.1.9)

for £ > 0 sufficiently small. Now, we let 4. be defined by

() = pE Mue (o)

It is easily seen that

1—¢ _,._
Aii. — apii. + Bluc|p2 T8 = T (12.1.10)

in By(pt), where X, (z) = S.(pez). Noting that @, < 1, and thanks to (12.1.9), we get by
standard elliptic theory that the u.’s are equicontinuous on any compact subset of IR". By
Ascoli’s theorem we then get that there exists uy € C°(IR™) such that, after passing to a
subsequence,

ile — ug in Cp (IR™) (12.1.11)

Clearly, ug(0) = 1, and we have that uy € D?(IR"), where D}(IR") is the homogeneous Eu-
clidean Sobolev space. Up to a subsequence, we define ¥y by

. 1+%
Lo(x) = lim Beljue e B (o)

Assuming that = — R as ¢ — 0, and that B. ||u€||1ug TP L Adase — 0, we then have that
Yo=0if R = 0 EO Aif R = +oo, and Xy = Allg,g) if R € (0,+00), where IIx stands for
the characteristic function of a subset X of IR". It is easily seen that ug is a solution in IR" of

the equation

1 ..
Aug+ Xy = ?ug -1 (12.1.12)
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We claim that this implies that ¥y = 0. When R € (0,400), such a claim easily follows from
the Pohozaev identity [33]. Note that in this case, ug is compactly supported in By(R). Let us
assume now that R = 400 and A > 0. Multiplying (12.1.10) by 4. and integrating, we easily
get that uyp € L'(IR"). By standard regularity results, we also have that uy is C%*, k € (0, 1).
We let n be a smooth cut-off function such that 0 < n <1, n =11if || < 1, and n = 0 if
|z| > 2. For r > 0, we let also 7, be given by

ne(z) =1 (;)

The Pohozaev identity [33], applied to n,uq, gives that
2/ (mtto), ) A(mpuo)da + (n — 2) / oA (nyuo)da < 0 (12.1.13)

Moreover, (V,)(z) = 1V (%) and (An,) (z) = 5An (%) Integrating by parts, using the
Lebesgue dominated convergence theorem, and thanks to (12.1.12),

n—2 N
/ (V(nruo), ) A(nruo)dz ="K / n2ug dx + nA/ n2uodr + o(1)
[ mundnuods = o [ s~ 4 [ tuds + o)

where o(1) — 0 as r — +o00. Coming back to (12.1.13), it follows that

A/ nPuodr < o(1)
Rn

and, passing to the limit as r — 400, we get a contradiction. Thus, A = 0 if R = +o0, and
this proves the above claim. In particular, ug is a solution of the equation

By Caffarelli-Gidas-Spruck [8], and also Obata [32], it follows that

n—2

1 2
UO(I) = ( u}2/n 2)
1+ ”T|:L'|

Noting that Suppu. C Bo(ﬁ), we get that ﬁ — 400 as € — 0. Another consequence is that

lim lim u¥de =1 (12.1.14)
R—+o00e—0 Bo(Rpue)

We claim that (12.1.14) implies in turn that the two following estimates hold. On the one hand,
there exists C' > 0 such that for any € > 0 and any = € B,

2|2 tu(z) < C (12.1.15)
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On the other hand,
lim lim sup |z|? tu.(z) =0 (12.1.16)
R—>+OO e—0 B\BO(RHs)

We prove (12.1.15). Let v, be defined by

n_1

ve (@) = [a]> ™ e ()

We assume by contradiction that for some subsequence, ||v:]looc — +00 as &€ — 0. Let x. be a
point in B where v, is maximum. A straitghforward consequence of (12.1.14) is that for x # 0,
and 0 > 0 sufficiently small,
/ u dr — 0
B.(5)

ase — 0. Let z € B, x # 0, and 7 be a smooth cut-off function around x. Multiplying (12.1.6)
by n?uf, k > 1, and integrating over B, it is easily seen, see for instance section 8, that for

5 > 0 sufficiently small, the u.’s are bounded in L(Z")*/2 (B,(5)). Since (2*)2/2 > 2*, it follows
from the De Giorgi-Nash-Moser iterative scheme and (12.1.6) that

u. — 0 in Cp (B\{0}) (12.1.17)

as € — 0. In particular, (12.1.17) implies that z. — 0 as ¢ — 0. Since u.(z.) < u.(0) and
||ve]| oo — +00, we also have that
Jze]
ILLE
as € — 0, and that u.(x.) — +o00 as ¢ — 0. We set

— 400 (12.1.18)

Q. = Ua(ifa)%lg—xs(l)
and for x € )., we set
2
0 (7) = ue(we) e (22 + ue(2.) 77 2)
It is easily seen that for ¢ > 0 small, and all x € By(2),

1
> 5 || (12.1.19)

T +u€(z€)_%x

Then, for all z € By(2),

2%_1\:z:5|1_%u€(:c€)_lv6 (:ce + ue(xg)_%x)

2%_1‘ZL’€|1_%U€(SL’€)_1U€(SL’€)

14
IA

0 ()

IA

so that for € > 0 small,

sup (z) <2771 (12.1.20)
z€By(2)

Let R > 0 be given. By (12.1.18) and (12.1.19),

2

B.. (2u-(z.)"72) N By (Rpc) = 0 (12.1.21)
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for € > 0 small. Noting that

/ 1762*dx:/ L, uFd
Bo(2) By (2ue (<) ”TZ)

it follows from (12.1.14) and (12.1.21) that

/ 7 da — 0 (12.1.22)
Bo(2)

£

as € — 0. As is easily checked,

1 - 5{}2*_1
K, °

Av, — aua(xa)_‘l/("_mf)E <

The De Giorgi-Nash-Moser iterative scheme, (12.1.20) and (12.1.22) then give that

sup 0.(z) — 0
x€Bp(1)

as € — 0. Since 0.(0) = 1, we get a contradiction. This proves (12.1.15). The proof of (12.1.16),
that we omit here, goes in the same way. On such a claim, see Druet [13], or subsection 12.1.3
below.

Going on with the asymptotic study of the u.’s, we claim that r. — 0 as ¢ — 0. We let
§ > 0 and n € Cg°(B) be such that 7 =0 in By(2), n =1 in By($)\Bo(5). Multiplying (12.1.6)
by 1 and integrating over B, we get with (12.1.17) that

1— .
B€||u€]|1/n25dx = —g/nug _1dx+oz/nu€da:—/(An)u€dm
B K, JB B B
= O(|luclr)

Since B, — 400 as € — 0, it follows that [znX.dx — 0 as € — 0. In particular,

/ S.dr — 0
Bo()\Bo (5)

as ¢ — 0, and since this holds for any ¢ > 0, we get that r. — 0 as ¢ — 0. Now we prove
stronger estimates than (12.1.15) and (12.1.16).

12.1.2 Strong Estimates

We define L. by

1 - *
Kj“g -
Letting § > 0 sufficiently small so that A — « is coercive on By(J), we claim first that L.
satisfies the maximum principle on By(d)\By(Ru.) for R > 0 large and ¢ > 0 small. Let

L.ou=Au— au — U
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indeed 2z € C* (Bo((s)\Bo(Rﬂg)) be such that z > 0 on 0 (By(0)\Bo(Ru.)) and L.z > 0. Set
2z~ = max(0, —z). Then,

0 < 2" L.zdx

/30(5)\50(Rﬂs)
= Ve [ Z2moep BBy + 2 280080 (1)
l—e¢ 22/ —\2

U z7)dx
Ky JBo(0)\Bo(Rue) * )

while, thanks to Holder’s inequality;,

2%—2 2*—2 2
/ (0)\Bo (Rpe) e ( ) dz < ||u€| L% (Bo(8 )\BO(RME))HZ ||L2*(Bo(5)\Bo(Rus))

Thus,
0 < —[IV2TlIZ2 so@nsotrue) T 2122 o050 (R0e)
e (12.1.23)
i el o oo e 12 12 o8\ Bo (20
By (12.1.14),

R1—1>I-|I-100 llm [[te || L2 (0 5\ Bo (R )) = O

It follows that for any A > 0, there exist £4 > 0 and R4 > 0 such that for R > R4 and
e € (0,e4),

[well 2* (8o (9)\Bo (Rue)) < A
Let B > 0, given by the coercivity of L = A — « on By(d), be such that

Bllz™ 72 sy o0 80(Ruey < NV2 L2080 ) — 2 2280 0080 (R0 ))

Coming back to (12.1.23), we have

—112 — —2
0< ||Z ||L2*(Bo(5)\Bo(Rus)) ( K N B)

Choosing A > 0 small, this implies that 2z~ = 0. The claim is proved. From now on, we let
¢ > 0 be such that L = A — (a + ¢) is coercive on By(5). We let also G be the Green function
of L in By(8) with zero Dirichlet boundary condition, and set H(z) = G(0,z). We fix v > 0
small, sufficiently small so that (1 — v)c — va > 0. Then, in By(0)\{0},

L.H™ VH|? 1-— «
i = v(l— 1/)| H2| +ap — 7 gu? -2

(12.1.24)

where ay > 0 is given by ag = (1 — v)c — va. An easy property of the Green function is that
there exists Cy > 0 and py > 0 such that for |z| < py,
\VH]? _ Cy
H? = |22

23



Thanks to (12.1.16), for R > 0 large and € > 0 small,

v(l=v)Cy _ 1—¢ 5 ,
>
e T K, -

in By(6)\Bo(Rp.). Coming back to (12.1.24), it follows that L.H'™ > 0 in the annulus
By (po)\Bo(Rp:). By (12.1.17), since ag > 0, we also have that for € > 0 small, L.H*™ > 0
outside By(pg). Hence, L.H'™ > 0 in By(d)\Bo(Rp.) provided that R > 0 is large and € > 0
is small. We fix R > 0 large. By (12.1.15), there exists C; > 0 such that

u < Clluag_l)(l_Q’/)|l,|(2—n)(1—1/)

on OBy (Rpu.). We also have that there exists Co > 0 such that H > Cy|z|[*™" around 0, and
that there exists C3 > 0 such that H < C3|z|*". Then, since L.u. = 0 and u. = 0 on 9B,(9),
we get that there exists Cy > 0 such that

L%@m%mkaH@%JEom&@ﬂ&mw%Mﬁ

Z_1)(1-2w

Cyps? "HY > u. on 0 (Bo(6)\Bo(Rpee))

By the maximum principle, it follows that

U, S C4M£7§L_1)(1_2V)Hl—l/

in By(0)\Bo(Ry.), and then that
u. < Csluag_l)(l_m/)|x‘(1—u)(2—n)

in By(9)\Bo(Rpue) for some Cs > 0. It is clear that this inequality holds also in By(Rpu.), up to
changing C5. As a consequence, we proved that for v > 0 small, there exists Cg > 0, such that
for € > 0 small,

Ue < Copl? V072 A=) 2-m) (12.1.25)

in By(d), and thus, also in B. Pushing further the analysis, we let now (y.) be a sequence of
points in By(%), and let G be the Green function of L = A — a in By(dy) with zero Dirichlet
boundary condition, where dy > 0 is such that L = A — « is coercive on By(dy). Thanks to
(12.1.6), and since . — 0 as € — 0,

G(ye, v)u® " (2)dx (12.1.26)

U < —
E(ya) — K, JBo(s0)

We set

-3

D, = u(y)pe *ly:"

and distinguish three cases.

Case 1: we assume that % — Rase — 0, R €[0,400). Then, thanks to (12.1.15), (®.)
is bounded.
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Case 2: we assume that y. — yo as € — 0, where yy # 0, and let § > 0 be such that
26 < |yo|. Then,

G(ye, x)u? ! (x)d
Lo, Gl (@)

< G(ye, 2)u "M (2)dx + G(ye, )u® Y (z)dx
[ Gl et [ Gl )
* 1 *
<C u? ldr + C 722@ ~ldx
Bo o) Bo(60)\Bo(6) [y — [~

where C' > 0 is independent of €. By (12.1.25), with (n + 2)r < 2,

1 2*—1 ( ﬁ_1>
I d,f =0 2
/30(50)\80(5) |y€ _ SL’|"—2 e [4é
Independently,

/ u e = / w2 tda + u? "l
Bo(8) Bo (pe) Bo(6)\Bo (pe)

21 -1
U dr =0 ( 2 )
/Bow i e

while by (12.1.25) where v > 0 is chosen sufficiently small such that (n + 2)r < 2,

By (12.1.11),

/ ug*_ldaj =0 (uﬁ_l)
Bo (6)\Bo (e )

By (12.1.26), this implies that (®.) is bounded.
Case 3: we assume that % — +oo and that |y.| — 0 as ¢ — 0. Then, by (12.1.25),

£

G(ye, 2)ul " (x)d

£

G(y., z)u? " (z)d

Jo s, Glwe )z ™ (@)

</ G ,qu*_lzdsz/

~ B, () e Jue ™ () Bo(80)\By. (1]

22 (1-2) (V—l)(n+2)/ 1
< ou .
< Opet =l .l Ty — 22

1 *
+C—= / ue " dx
‘ys‘n_ Bo(b0)
< Yel™™

where C' > 0 does not depend on €. Thanks to (12.1.26) we then get that

Ln [ 2—(n+2)v

n— -5 €

e | 2,U€ *ug(y.) < C <|y |> +C
€

and since % — 400 as € — 0, we get that (®.) is bounded.

€
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Summarizing cases 1 to 3, for any sequence (y.) in By(%2), there exists C' > 0 such that

-2
pe 2 lye|"Puc(ye) < C

Since the u.’s are radially decreasing, this implies that there exists C' > 0 such that for any
x € B and any € > 0,

7 |22 (z) < © (12.1.27)
An equivalent formulation of (12.1.27) is that for any x € B and any € > 0,
n—2
2
1-2 1
us(r) < Cpe ? | ———— (12.1.28)

w. /n
1+ S ff?
where C' > 0 is independent of x and .

Going on with the proof of (12.1.4) and (12.1.5), the goal of the following subsection is to
estimate r. in terms of u.. We start with the case n > 5.

12.1.3 Estimating r. with respect to ;. when n > 5

As already mentioned, we want to estimate 7. in terms of u.. For that purpose, we define the
function u. by

t.(x) = rf_lua(razc) (12.1.29)
It is easily seen that u. > 0 in B, 4. = 0 on 0B,

n 1 — *
Adie — ar?. + Blfu|ir2 T = ngf -1 (12.1.30)
in B, and
/ag*dx —1 (12.1.31)
B

Moreover, if we set ji. = . /r., then

n—2

n_ 1 oz
e . (7) (12.1.32)

1+ #mz
in Cp.(IR"), and, thanks to (12.1.27),

1—n

2 "2 (2) < C (12.1.33)
for any x € B. By (12.1.32), ji. — 0 as € — 0. As another remark, since . is C' in B, we have

that
Oy =0 on 0B (12.1.34)

n

Multiplying (12.1.30) by ,&;_5 and integrating we get that

1z R n41 1-n l—¢ 1-n Cox
%l E [+ BudorE T B = LS [
n
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where |B]| is the volume of B. Since

n X " 2¢—1
,&;_5/&5(:)3)2 _1d93:/ <,&§ lﬁa(ﬂax)> dx
B Bo(-)

we get with (12.1.32) and (12.1.33) that

n X 1 :
e / Ge(2)? tdx — (7) dx
B R™

wZ/n
1+ #o—|x|?
as € — 0. Independently, since r. — 0 as ¢ — 0, (12.1.33) gives that
rfﬂ;_% / Uedx — 0
B

as ¢ — 0. Noting that

nT+2
1 1 noo 2-1
[ | = (- 22w e
w1 el

it follows that
n41,.1-1

Bellulliré ™ fie * — A, (12.1.35)

as € — 0, where
1

Ay = nn —2)2" 2w~ (12.1.36)

We have that

2*—1
1-n 1-n ni1,.1-2 1 — & 1-n
~ 3 A~ 2 A 3 A~ ) ~ 7 ~2 [ A 3 A~
Alfe *ac) —arffe *de + Belucllird fe * = K. He <,U€ ua)
n

and the coefficients in this equation are bounded thanks to (12.1.35). Since the sequence

n

(ﬂi_gﬁa) is bounded in any compact subset of B\{0}, we get by standard elliptic theory that

A1

s Fa. — @ in G}, (B\{0}) (12.1.37)

where @ is a solution of
AD+ A, =0 (12.1.38)

in B\{0}. Clearly, ® is radially symmetrical and decreasing in B\{0}. Moreover,
®=0 and 9,9 =0 on 0B

Integrating (12.1.38) on B\By(r), we then get that

d(z) = An (1 —1>+ﬂ(\x|2—1) (12.1.39)

n(n—2) \ |z|n—2
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Now we apply the Pohozaev identity to . in B. The Pohozaev identity [33] for 4. in B states
that

) auAs 2d —2 / Ae &JAsd
| @) (@00 + (n=2) [ a(0,i.)do

) / (Viie, 7) Adedz — (n — 2) / i Addr

B B

where v is the unit outer normal to dB. Since u. = 0 and 0, 4. = 0 on 0B, we get with (12.1.30)
that 49

arg/agdx_ "TEB T /ﬂgdx

B B

By (12.1.33), (12.1.35), (12.1.37), and (12.1.39), this implies that

1 2 A2
2 [ s — ”+ A, /(I)d:c = Sy (12.1.40)
an—2 dno

as ¢ — 0. Independently,

1

3
fi2 /s

G () dr = /

and by (12.1.32) and (12.1.33) we get that when n > 5,

2

2—n
/Bﬂe(if)2d$ — (/IR <1 + Z/ |:1:|2> d:):) i —I—o(ﬂ?)

It is easily seen, see for instance Demengel and Hebey [11], that

w2 N\ET W T(E0(2 = 2)
1 n 2 d — 2n—1 n 2 2
/( Ty |x|> ! we  TD(n—2)

where I' is the Euler function. Since

—1Wn—-1 n
['(n) =2""122—T(=)?
(n) = 222
we get that when n > 5,
dn—1) ,
A 2 o
/Bug(x) de = =72 + o (122) (12.1.41)
Combining (12.1.40) and (12.1.41), it follows that
r2 (n—4)w,1 A2

lim

= 12.1.42
e—0 jr—4 16n(n — 1)« ( )

when n > 5, where 4, is given by (12.1.36).

The goal of the following subsection is to estimate r. in terms of y. in the limit case n = 4.
For that purpose, a stronger estimate than (12.1.28) is needed.
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12.1.4 Estimating r. with respect to ;. when n =4

We claim that when n = 4,

4
. a2
ll_)r% |In fic|rs = - (12.1.43)

In order to prove this claim, we let (y.) be a sequence of points in B such that y. — 0 and
|z—i| — 400 as € — 0. We let also 0. be the function given by

b (z) = |y| 274

e (|ye|)

Then,
n 1 *
|5+ €21

Av, — ar?|ye|2ve + B€||u€||1r€2 |y~E K. ¢
n

Lo\ 1-2

w—(”) 0

g €
|

NS
. . 241 n
Aw, — ar€2|y5|2w€ + Be||uelx < ge ) 2’ |y€|'5+1

||
N 2
_ 1 - 6 <ILL5 ) w2*_1
Koo \lgel ) °

By (12.1.32) and (12.1.33),

in Bo(‘y—ld), and if

we get that

(12.1.44)

2 nz2
AE " ~ AE 1
<“ ) . < a x) - (f/) (12.1.45)
el |Ye| 14 < |z)2

|lz|" 0. (z) < C (12.1.46)
Integrating (12.1.44) over Bo(wl—E'), we get that

in O _(IR™), and

Lo\ 1-2
1 n wn
Bl |) T
ve R (12.1.47)
= ar?ly.|? x)d L—e( fe ¢ -1y
= Ye x—l— K . we(x) T
\y ) n |y€| Bo(pa)

By (12.1.46),

1
[yl / , dx:lyEIQ‘"/we<x)dxgofmdx:cf
0(r527) |ya| B |517|

Independently,
N 2 . n—=2 R 2*—1
e N o iz M

<\y€\> /B(L)we(x)2 1dx:/B(L) <<‘ 7) We <‘ €‘x>) dx
€ 0 [yel 0 fe y€ y€
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and thanks to (12.1.45) and (12.1.46), it follows that

n+42

~ 2 1 2

He ZZJE(:L')T_ld:l? — —_— dx
| 1 n 2/n

Yel /Ity R \1+ ]2

as ¢ — 0. Coming back to (12.1.47), and since |y.| — 0 as ¢ — 0, we get that

A\ L
+
B Hué‘Hl <| |> 2 ‘ye
Ye

as ¢ — 0. Noting that the sequence (w.) is bounded in any compact subset of R™\{0}, it
follows from standard elliptic theory, (12.1.44), and (12.1.48), that . — ¥ in C} _(IR"\{0}),
where ¥ is a solution of AV = 0 in IR"\{0}. We let 6 > 0 small, and we integrate (12.1.44)
over By(d). Then,

20 (12.1.48)

— O, .do — ar?|y.|? / Wedx
By (5) Bo/(9)

~

Bl (—

Y|

1-— 5 ok
_1-¢ <N_> [ izt
K, \lyel) /JBos)

With the same arguments as above, it is easily seen that

-3
241 n
) PEH 54 1By o) (12.1.47)

T?‘ysﬁ/&)(é) Wedz — 0

Ao\ 2 1 =
< m ) / zbf*‘ld:): - 2/n dx
vl ) JBoo) A I

as € — 0. Since w. — ¥ in C}(IR"), we also have that

and that

/ O, W.do — 0, Vdo
B0 (6) 980 (5)

Passing to the limit as ¢ — 0 in (12.1.49), it follows that

n+2
2

/ 0, Vdo + —/ dr =0
OB (9) n 1+ Wn ‘x|2

Wn—1

and thus that

/ 0,¥do + LA, = 0 (12.1.50)
dBo (%)

where A, is as in (12.1.36). In particular, ¥ # 0. Independently, we have that ¥ > 0, and,
thanks to (12.1.46), there exists C' > 0 such that

lz|" 2 () < C (12.1.51)
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for all z € IR"\{0}. Then the Kelvin transform ¥ of W given by

¥ - g (1)

is bounded and harmonic in [R™\{0}. In particular, ¥(z) = o(|z|>™") as |z| — 0. Thus, see for

instance the excellent Han-Lin [23], 0 is a removable singularity for ¥, and Liouville’s theorem
implies that ¥ is constant. Hence, there exists A > 0 such that ¥(z) = \/|z|"~? and, thanks
to (12.1.50) we get that

Ay

V@) = o)

where A, is as in (12.1.36). In particular, taking © = y./|y.|, we get that for any sequence (y.)

inBsuchthaty€—>Oand%—2|H+ooasa—>0,

An
n(n —2)

1

_9 1= _9 2_
" = 2" wy

e "2 P () — (12.1.52)

as ¢ — 0. Combining (12.1.32), (12.1.37), (12.1.39), and (12.1.52), it follows that for any § > 0
and any x € By(9),

n—2

1 AE 2 Aa 2
. <c(r) < C(0) | —Lo— (12.1.53)
OO\ + 4 |ap 2 + S|l

for € > 0 small, where C'(0) > 1 is such that C(d) — 1 as § — 0. When n =4, and for 6 > 0
small, we get with (12.1.33) that

"9 ~9
widx = O
/3\30(5) € (7z2)

Thus,
/agdx :/ @2dz + O(42) (12.1.54)
B Bo(8)

Independently,

2 wi/4(5
,&a 16(4}3 A2/ 2fie 2\ —2 3
e dr = 1 d
/30(5)<A2 T ) X o e A ( —1—7‘) rodr

‘*’4/2 2
fi2 + =]

16(4}3A ~ ~ ~
= A2 fie] + o (2] n fic])

Then, coming back to (12.1.54), and thanks to (12.1.53), we get that

16
/ @2de = —2 @2 jic| + o (2] In .| (12.1.55)
B W4

Combining (12.1.40) and (12.1.55), this proves (12.1.43).
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With independent arguments we also have that

1-n 1-n 1-2 g R
mwmm=m2/ veds = it P12 /%w
Bo(re) B

and (12.1.33), (12.1.37), and (12.1.39) imply that

-1-2 .1-2 /<I>d _ Apwn_q
re e Pl = ®de = o)
as € — 0. By (12.1.35), we then get that
2n(n + 2)

B2 —

(12.1.56)

Wn—1
as € — 0. As already mentioned, we want to describe the behavior of B. in terms of € as ¢ — 0.
Thanks to (12.1.42), (12.1.43), and (12.1.56), the question reduces to describing the behavior
of fi. in terms of € as ¢ — 0. This is the subject of the two following subsections.

12.1.5 Estimating /i. in terms of ¢ (Part 1)

We want to describe the behavior of fi. in terms of € as ¢ — 0. For that purpose, we let

o= (140U + p2 (G + w.) (12.1.57)
where .
n_ 2/n -3
U.=p2 (ﬂg + “’1 (1- g>|x\2> ,
G. = on(|* - 5). (12.1.58)
1 n _n
o = o Bl s

6., B are real numbers, ji. is a positive real number and w, is a function. We choose 6. and ji.
such that
/B(VUa, V) de =0,

(12.1.59)
/ (V (2, VU.), Viw.) da = 0
B
Let
" w2/n 1-3
0=t (54 S0 - oo
To get (12.1.59), it suffices to choose 6. and fi. such that they minimize
0 2
T (0, ) = / V(e — (1+0)U,) — 242 aca| do
B
among the #’s in [—%, %} and the p’s in {”2—5, Q[LE] and to prove that 6. and fi. lie in the interior
of the interval of constraints for € small enough. We prove indeed that
6. — 0 (12.1.60)
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as € — 0 and that
He 4 (12.1.61)

He
as € — 0. By (1.11), it is clear that J (0, fi.) — 0 as ¢ — 0 so that J (6., i.) — 0 as ¢ — 0. By

(1.11) again, one gets that this enforces the following to happen:

. A%L—l 2 . L
lim [ 1V ((1+9€)U€+ua Ge) s =

and
: ool A B
tig [ (v ((1 10U + G€> ,Vue) i = 7

where U, and G. are as in (1.58). Using (1.11) once again, this is not difficult to check, noting
that a. = O (1) thanks to (1.35), that these last two relations lead to (1.60) and (1.61). We

also choose (. such that w. = 0 on 0B. Hence,
L (1= 5)w2/" -5
01— G+ (140 (2 + =) =0

By (12.1.35) and (12.1.61), we have that

A,

o — —
2n (12.1.62)

B ——

‘ n—2
as ¢ — 0. Thanks to (12.1.33), (12.1.37), and (12.1.39),
/ wodz — 0 (12.1.63)
B

as € — 0. Let W, be such that
W.(z) =Wy ((1 — 5)1/236)

where V) is as above. Then,
1—¢e. o
A = 2% —1
W, K W:
and
/ VU, | :/ VW, |2d
B Bo(7-)

/ VW, |2de = (1 — &) 8 K1
Rn

As an easy consequence, writing that
/ VW, |2dz = / VW, |2da — / VW2 da
Bo(72) " R™\Bo(7-)
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we get, thanks to (12.1.61), that

1 n—2 A2u} -1
U.l?de = — — SnmRm =2 T 12.1.64
JIVUPdr = o+ e = SRR o) o) (12.1.64)

Independent computations give that

/ VG, [*dx = Ao +o(1) (12.1.65)
B ‘ ~ n2(n+2) o
and

/B (VG., Vaw.) dz = /B (AG.)w.dz = o(1) (12.1.66)

thanks to (12.1.63). Similarly, it is easily seen that

A%w, 1 n_ n_
il o(pd ) (12.1.67)

By (12.1.59), (12.1.61), and (12.1.64)-(12.1.67), we then get that

/B (VG.,VU.)dr = —

1 26, -2 A2w, 2
B n n 2Ky n® — (12.1.68)

272 [ [Vweda +o(6.) + ofe) + ojiz?)

Now we claim that

e=0(u?) (12.1.69)
Applying the sharp Sobolev inequality to 4., we get thanks to (12.1.30) and (12.1.31) that
Kin < arf/Bﬁ?dx - B€]|u€]|1r§+1/8115d:c (12.1.70)
By (12.1.40),
ari/ @2de = DL A2 R 4 o) (12.1.71)
B 4dn
while (12.1.33), (12.1.35), (12.1.37), and (12.1.39) imply that
B.lu. §+1/ fedy = —7L A2 g o 12.1.72
Jrlrd ™ [ e = L a2 ol ) (12.1.72)

Combining (12.1.70)-(12.1.72), this proves (12.1.69).

Let us now multiply (12.1.30) by @. and integrate over B. Thanks to (12.1.68)-(12.1.72),
we get that
ne 20,

oK, T K.

An—2 2 Wn—lAi An—2 An—2
B e) — 12.1.
+ i [ Vwef?de +o(6.) oy o) (12.1.73)

In particular,

/B V. de = o (0.427) + O(1)
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and, thanks to the Sobolev inequality,

(/ Jw.|* dw)% =0 (0427") + O(1) (12.1.74)

For 1 <p <3 and X,Y such that X > 0and X +Y >0,
—1
(X Y)Y = X7+ pxr-ty + 20D > ) xr2y2 oy )

while for 3 < p <4 and X,Y as above,

p(p—1
2

(X +Y)P = XP 4+ pXP~Y + )XHW + O(XP3Y ) + O(|Y|P)

Writing that [z 42 dz = 1, we then get that

1=(146.)? /Uzd:):+2*(1+9)2‘1 /U2*—1G +w,)de

2*(2* — 1 . \
+%gg—2(1 +0.)? ‘2/BU€2 (G, +w.)dx (12.1.75)

+0 (,EL?/B |G +w5\2*dx>
if n > 6, and

1=(1+0.) /U2d:c+2*(1+9)2—1 /U2*—1G +w,)dz

(25 — 1)
2

an L3/
+0 </:L§2 ’ (/B\Ge—i-w5|2 dx) ) +O( / |G. +w.|* dx)

if n =4,5. For W_ as above,

e 007 [ UF G 4w (12.1.76)

« * 1
/Ugdx:/ W2de and [ W¥dr=-—"
B Bo(7-) R" (1 —g)n/?
Thanks to (12.1.61) and (12.1.69) we then get that
1—(1+6.)% / U de = —2°6, — ga +0(6.) + o(i"2) (12.1.77)
B
By (12.1.74) we easily get that
ﬂg/B G + w.|? dz = o(3"2) + o(6.) (12.1.78)
and
L oo \NYE
</B G + w| d:c> = o(i"2) + 0(6.) (12.1.79)
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Independently, it is easily checked that ,&;_%Wa(izc) = U.(z). Hence

and, thanks to (12.1.59), we get that
/ U2 NG, + w.)dz = / U 1Gde
B B
Then,

/ UF G, + w.)de = i / L Wele) Gl
B Bo

1
L)

and we find, thanks to (12.1.61), that

A2K w1 21 24
_ A fnWnon ot 02 12.1.80

/ UG, + w.)dr =
B
Independently, it is easily seen with (12.1.74) that
/ U 2@, +w.)2de = / U2 ~2w2dzx + o(1) + o(0. %) (12.1.81)
B B

Coming back to (12.1.75) and (12.1.76), we get with (12.1.77)-(12.1.81) that

. 2(n — 2 —2)?
,EL?_2/ U2 2widx = —7(71_‘_ 5 )65 — ;? n ;)6
B n n
ek (12.1.82)
nAnWn—1 .o ~mn—2
Inintn—l an 0.
DR o(0) + o)
On such an assertion, note that
N Lo\2/2
/ U2 2widr = O ((/ w? dx) )
B B
Independently, it is easily seen from (12.1.30) that
1 - * * — _n
Aw, = —— (@7 = 1+ 002 ) i +arZies Vi
in B. By (12.1.59) we then get that
2 1—€A1—% 2% 1 2A1—7§L N
/ |Vw,|*dx = fle /u8 w.dzr + ar fie /uawadz (12.1.83)
B K, B B

Now we want to estimate the terms in the right hand side of (12.1.83). By (12.1.37) and
(12.1.39), |z|"?w.(z) — 0 in CP_(B\{0}) as ¢ — 0. Independently, it follows from (12.1.53)

loc

that for |z| <4 and e small, |z|"?w.(x) < £(d) where £(§) — 0 as § — 0. Hence,

|z|" 2w, (z) — 0 in C°(B) (12.1.84)
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as € — 0. We now write that
U U U
/ T dr = —€2d1’—|—/ ey
B |z["~ Bo() ||~ B\Bo(L) |]"~

Thanks to (12.1.42) and (12.1.43), it follows from (12.1.32) that

and from (12.1.33) that

Then, (12.1.84) implies that
w2 ? [ dawda = o(1)
For X,Y such that X > 0 and X +Y > 0 we write now that
(X +Y)7 = XT 7 4 (28 = DX Y 4 f(n)O(X* Y2 + O([Y )
where f(n) =1if n=4,5, and f(n) = 0if n > 6. Then,
pr® [ e = (14007 E [ UZ e

2 =D +0.)772 [ UG+ w)weda

#1870 ([ UGt wPlunlds ) f(n)

+420 ([ 162 + el ol
As when proving (12.1.81), it follows from (12.1.74) that

/B U (G, + w.)w.ds = /B U 2w2da + o(1) + o(6i2™)
Still thanks to (12.1.74), we easily get that
[ 16+ udldz = 0(1) + 0042

and
[ UF G+ w e = O(1) + 00,2
B

when n = 4,5. We have already seen that
/ U? lw.dr =0
B

Combining (12.1.86)-(12.1.90), it follows that

I N n -+ 2 . 9,
i /Bug Lw.dr = — BUE 2widx 4 o(1) + o(0.42™)
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Coming back to (12.1.83), we get with (12.1.85) and (12.1.91) that

2 "
/B V. |2de = ﬁ [ UFPulde + o(1) + o8- ™)

Then, combining (12.1.82) with (12.1.92),

2 n—2

An—2 2
Vuw,|2dr = ——0, — —=
i [ IVuede PR

2
Anwn—l ~n—2

+n(n - 2)'%

+ 0(0:) + o(l~?)

and coming back to (12.1.73), we get that

(n—Dwn-1 9 . -n_o -2
= 2K 4 0(6.) + o(ji”
€ 4n(n _ 2) n n:ue 0(9 ) O(:ue )

where A, is given by (12.1.36).

(12.1.92)

(12.1.93)

(12.1.94)

As already mentioned, we want to express [i. in terms of € as ¢ — 0. Thanks to (12.1.94),
if we prove that . = O(i""?), then we get a description of fi. in terms of ¢ as € — 0. The

following section is devoted to this estimation of . in terms of ji..

12.1.6 Estimating /i. in terms of ¢ (Part 2)

After (12.1.94), we claim that
0. = 0(?)

€

We prove (12.1.95) by contradiction. We assume that
|98|:&§_n — +00

as £ — 0. Then, by (12.1.69), (12.1.73) and (12.1.82),

2 *
lim fB|V*wE| dx -1
e=0 [ U2 2widx K,

We contradict (12.1.97). For that purpose we consider the eigenvalue problem

A@i,a = Ui,aUg*_2S0i,a in B
i =0 onoB

where
/BUf 20 cpjedr = 0y

and g1 < ... <. <.... Let V be as above, given by

w2/n ) -5
Vilo) = (1“5 of
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We claim that for any ¢ > 1,
Wie — [ (12.1.99)

ase — 0, up <...<pu; <... and that

/ U2 (g, — ;) d — 0 (12.1.100)
B

as € — 0 for functions v; . satisfying that
78 (o) — ()

in C2.(IR") N L* (IR"™) as € — 0, where the 1;’s are such that
AY; = 1,V "2 in R™
/ Ve < oo (12.1.101)

We prove (12.1.99) and (12.1.100) by induction. When i = 1,

fB |V<P|2d37

— 1n " rro%x_9 o 7
Fre = e B o0y [, UZ —20%dx

On the one hand, taking ¢ = U, — U.(1), we get that
li < !
imsup gy, < —
ne P K1, K,
On the other hand, thanks to the sharp Sobolev inequality,

)
B

IN

K"/B |V<p175|2d1’

= Kn,ul,s/BUf*_%Piedx

o 1_2% o 2%
o (o) ([

liminf uq . >
e—0 ’

IA

and we get that

Hence,
Hie — H = — (12.1.102)

as € — 0, and we also have that

. 1
/ |Q01,a|2 dr — 1 and / |Vg01,€|2d1' — T
B B K,

as € — 0, since [z U2 %o} dx = 1. We let W, be as above, given by

2/n 1-3
Wy 2
W.(z) = <1+ . (1—5)|:E|>

69



and let ¢; . be given by

R R . 1

P1e(fiex) in By(—)
fle

Pre(r) =0 mJR"\BO(ME)

It is easily seen that
/ W2 242 Ldr = / U2 =22 dr =1

and that the ¢, .’s are bounded in Di(IR"). We may therefore assume that the ¢; .’'s converge
weakly to some 1y in D?(IR") as € — 0. In particular, it is easily seen that

/ W dr <1 (12.1.103)
an
For R > 0, we write that

1= /]Rn W€2*—2¢i€dx — /]Rn(W€2*_2 o ‘/2]2*_2)@%5(&6

+ VE 22 dr + VE2? dx
Bo(RD) 9015 R™\Bo(R) 0  Ple

By Holder’s inequality,
[owE gt <o

)

. . 2% /(2% —9 l—l*
W22y —2‘ /( )dx) 2

n

(2—2)/2*
V2232 dy < C </ v *d:::)
/IR”\BO(R) 0 PLedt= R\Bo(R) °

limsup [ (W22 - VF2)p? do =0
R™ ’

e—0

and

Hence,

lim limsu VZ252 dr=0
R—Yo0 Hop B\Bo(R) ° Ple

and we get that

V222 2%_2 2
dr = lim V dr =1
/Bn (Uh R_{ Yoo Jo(R) o i

By Holder’s inequality,

X N2 -2)/2 Lo\
| Vet < </ v dx) </ W2 dx) (12.1.104)
B?’L R”L n

and since Vj is of norm 1 in L?"(IR"), we get from (12.1.103) and (12.1.104) that 1/, is of norm
Lin L¥ (IR") and that 1; = V5. Then 9 is a solution of (12.1.101). Writing that

| V@ —vlde = [ Voot [ VenPde - / Br 0¥ e
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we also get that the ¢;.’s converge strongly to ¢, in D?(IR"), and in particular that the ¢ /’s
converge strongly to v, in L¥ (IR™). Then, (12.1.100) is proved and we get the result for i = 1.
Let us now assume that (12.1.99)-(12.1.101) hold for i = 1,...,p. We have

_ 2
Hp+1e = Inf /B V| dx
where H is the set of the functions ¢ € C°(B) which are such that

/ U2 2p%dr =1 and / Uf*_2<pi,€<pdx =0
B B

for all « = 1,...,p. We claim first that the p,41.’s are bounded. It is easily seen that the
Gie’s, i = 1,...,p, are bounded in D?(IR"). Then, it follows from (12.1.100) that the @;.’s,
i=1,...,p, converge to ¥; weakly in D?(IR"). We let f € C>°(IR™) be such that
Vo' fabida = 0
B”L
foralli=1,...,p. We set
-z, 1

f(=z)

He

fe(x> = [t

and

p
fe = fe - Z </B ng _2f€90i,€dx) Pie
i=1
For € > 0 sufficiently small, f. € C2°(B), and since [z U2 ~2¢; .p;.dx = 6;;, we have that
/ U¥ 2 f.p;edz =0 (12.1.105)
B

forall i =1,...,p. It is easily checked that

~ * p * 2
B B i=1 \/B

, ) (12.1.106)
/ IV f.|?dx = / |V f.|2da — > (/ Uf*_Qfeapi,edx) Lie
B B — \Us
for all € > 0, and that
JUE = [ WER e [ vE
5 R ® (12.1.107)
JUE 2 pied = [ WE S fgide — [ VE 2 fude =0
B R”L Bn
as ¢ — 0. Since,
/ IV f.|2da = / IV f|2d (12.1.108)
B R"
for all € > 0, we get by combining (12.1.105)-(12.1.108) that for C' > 1 and £ > 0 small,

Jrr NARCE:
[ V& 2 fPda

Mp41.e < C
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In particular, the p,1;.’s are bounded, and this proves the above claim. We may then assume
that 1. — fips1 as € — 0, where 1,1 > p1,. As above, the ¢, .’s are bounded in D}(R").
We may therefore assume that the ¢, .’s converge weakly to some v, in D?(IR"). The
©Opt1,e s are solutions of

Appi1e = Np+1,aWa2*_295p+1,e

in Bo(i). It is then clear that ), is a solution of (12.1.101). Now we write that

W2 2 (@pir1,e — Upir)da = W2 (Ppr1e — Ypir) de + og(1)
Bn Bo(R)
where

R fone(1) =0

We may assume that the ¢, .’s converge to 1,41 in L7 (IR"). Hence

| WE By = )z — 0

as € — 0, and this clearly proves that (12.1.100) holds. By induction, it follows that (12.1.99)-
(12.1.101) hold for all i. Now, as shown by Bianchi-Egnell [4] and Rey [34], the eigenvalue
problem

Ay = vVZ %) in [R"

) 12.1.109
V& 2% dr < 400 ( )
B’!L
has a discrete spectrum 14 < ... <p; < ... such that
1 2 —1 - 2 —1
V) =— , Vg=...=Upjo=—— , Up
1SR +2 K. +3 K,
and the eigenspaces corresponding to the eigenvalues - g7 and £=L are
& = Span{Vp} and & = Span{®;,7=0,...,n}
where N n
2/n 2 2/n 2/n 2
Oy = <1+ 4 |1’|2> (1 — wij|l’|2> and ¢; = <1+ 4 |:1:|2> T,
for j = 1,...,n. Coming back to our problem, we let ko be such that jy,,1 > 22, and write
that
ko
=Y a;.pi-+ R- (12.1.110)

i=1

where w, is given by (12.1.58), and

fB (Vwea v‘Pi s) dx 1 /
Qe = : = V'LUE, VQOLE dx
I IVpicPdx Mie /B ( )
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We write that

2

2
( /B (Vawn, Vi) dx) <2 < /B (Vawe, Vi) d:)s>
2
12 ( /B (Vaw, V(pre — i) dm)
where ¢; . = U, and ¢, () = ﬁ;_%wi(%x) for 2 < i < ko, so that the ; .’s when 2 < i < kg
are linear combinations of the functions (fj given by

R 1 1—
Pj(x) = fie *Pj(——w)

€

o

By (12.1.59), and since the w.’s are radially symmetrical,

/B (Y., Vi) de = 0

for 1 <i < kq. Hence,

2
T

2
ai,s <

[ IVl [ (g = i) Pda (12.1.111)
B B
When i = 1, we have seen that the ¢;.’s converge strongly to Vy in D?(IR") as ¢ — 0. Hence,

/B\V(sol,s — 1) Pdx — 0 (12.1.112)

as € — 0. We claim now that for 2 < i < ky,

/B IV (ic — ie)|?dz — 0 (12.1.113)

It is easily seen that

V(pie—tifPde = [ V(@i — i)
Jol Vo —viaPdo = [ 190 = v ds

(12.1.114)
= i€+/ v22d$—2/ VAig,Vidx
piet fl ) VP =2 [ (V51 90)
Similarly,
W2 -2y2dq :/ VZ =292z + o(1 12.1.115
Juay W2 Putdo= [ Vi 4 o) (12.1.115)
and
W22, aydy = / V2 2, dz + o(1 12.1.116
Juay W2 P rctndo = [ VE i+ o) (12.1.116)
Independently, since the v;’s are linear combinations of the ®;’s, we get that
/ Vi[2dz = m/ V2202 de + o(1) (12.1.117)
Bo(75) Bo(7-)
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At last, it follows from (12.1.100) that
1 +/ W2 22 de = 2/ W2 20, absdx + o(1) (12.1.118)
Bo(ﬁ—ls) BO(%)

Noting that
‘/Bo(ﬁlg) ( 3 ,l7b ) B()(ﬁls) ’ w ( )

we get by combining (12.1.114)-(12.1.119) that (12.1.113) holds. Coming back to (12.1.111), it
follows from (12.1.112) and (12.1.113) that

Q=0 </ |ng|2dg:) (12.1.120)
B
Then, by (12.1.110) and (12.1.120),
/ V. |?de > o (/ \Vw€\2d:c> + ukoﬂ,e/ U ~2R%dx (12.1.121)
B B B

Independently, it is easily seen that

k
/ Uf*_2w€2dx = Za?a +/ Uf*_2Rgdx
B = " B

(12.1.122)
=0 (/ |Vw5|2d:)3> +/ U2 2R%dx
B B
Then, it follows from (12.1.121) and (12.1.122) that
2
lim inf JEL Y04 (12.1.123)

=0 [ UZ2w2dx

and since fug,+1 > %, (12.1.123) is in contradiction with (12.1.97). In particular, (12.1.95) is
proved.

The final argument in the proof of (12.1.4) and (12.1.5) goes as follows. Combining (12.1.94)
and (12.1.95) we get that
T — d)wy,_1
lim ez = 1 e o 12.1.124
g “He dn(n—2) " ( )
By (12.1.42),
ad—m 2 _ (n —4wn 147

li = 12.1.125
@t T 16n(n —1) ( )
when n > 5, and by (12.1.56),
2 2
lim B.r"*? = 2n{n+2) (12.1.126)
e—0 wn_l
It follows from (12.1.124)-(12.1.126) that
. (=) (n-+2)
11:(1(1] B.e 22
n+2
2n(n+ 2 e (=1 T
= 2Ti/1(n_2) (4 n(n — 2)(n — 4)) : ﬁa
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when n > 5. This proves (12.1.5). We need some more work to get (12.1.4). Assuming that

n = 4, it follows from (12.1.69) that ¢ = O(ji?). Hence,

N —

, | In fic|
im sup

<
e—0 | ln€|

By (12.1.43) and (12.1.56),

4
. ~ 2 _ =
lim | I fic|rs = —

lim B.r = 18
e—0 ws
Writing that
B.  BaS  (|mpl]\’
|Ine)3 (r2[Inji.])* \ |Ing|
it follows from (12.1.127) and (12.1.128) that
B. 3a3

lim su
P el = 32w
Conversely, we claim that
. B. 3a3
lim inf >
e=0 |Ine]? — 32ws

For that purpose, we let f. be the function given by

A

(1) = ————— 4 a (|z]® - b.
O = (of* =5,

(12.1.127)

(12.1.128)

(12.1.129)

(12.1.130)

(12.1.131)

where \., a., and b, are real numbers. Given k. > 0, we let also fe be the function given by

fole) = kiefa (kix) in By (k.)

fe(z) =0 in B\By(k.)

We choose k. such that

k2 = L
°  o|lng|
and A; > 0 small such that ,
>\€
T W

Moreover, we choose a. and b, such that fa is C' in B, and hence such that

__VE S S
RYCPICa N O
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(12.1.134)

(12.1.135)



In particular,
4

a5—>—w4

b. — 2

as ¢ — 0. Noting that f. > 0 in B, we write now that for any ¢ > 0,

JIViPis—a [ s s ([ fae) = 125 () fiar)

Easy computations give that

] 1
[ frdr = 05 1232 1 M| + 0(k222| In A|)
B Wy

£

and, thanks to (12.1.136), that

~ . 2(4)3]{7?)\5
/Bfad:v— N (1+0(1))

Similarly, we find with (12.1.136) that

1 256ws
K? 3wy

A+ 0(\2)

and that - 198 K2
([ Ftar) =1 2R 4 o0
B

Wy
Plugging (12.1.138)-(12.1.141) into (12.1.137), it follows that

128ws
3(4)4

€

2 4W§ 612
A+ B. (14 0(1)) k2A\Z + 5
Kj

9(4)4

1
> 10002 I ] 4 022 I Ac]) + 0(32)

Wy

(12.1.136)

(12.1.137)

(12.1.138)

(12.1.139)

(12.1.140)

(12.1.141)

(12.1.142)

By (12.1.133) and (12.1.134), € = 0o(A?) and k2|In \.| = 2 + o(1). We then get with (12.1.142)

that
B, 3a3

|Inel? = 32ws

and (12.1.130) is proved. Then, thanks to (12.1.129) and (12.1.130),

+o(1)

B. 3a3

20 |Inel®  32ws

and (12.1.4) is also proved.

76



12.2 A test function type argument

We let (M, g) be a smooth compact Riemannian manifold, n > 4, whose scalar curvature is
positive somewhere. We let also o € M be such that

Sy(0) = max Sy (v)

where S, is the scalar curvature of g. For 6 > 0 small, we consider By(d) the Euclidean ball of
center 0 and radius 9, and we still denote by g the metric exp} g. Let us assume that for any

u e G (Bo(9)),

2 2/2*
A 1—¢ N
Vul2d Be/ dv. | > / 2y 12.2.1
[, IVl + (M) 1l ) e (80(5) af? du, (12.2.1)

The goal in this subsection is to prove that

N

Be 1 3
! ‘ > . .
= [Inel® = 2304ws <r%aﬂ§ Sg> (12.2.2)
when n = 4, and that
lim inf Bee™ 2020 > () (maX Sg> (12.2.3)
&0 xeM

when n > 5, where

4
oo 2n(n + 2)w2+”
n — on_ "
WI=E (4n=3p(n — 2)(n — 4))+2

n—1
is as in subsection 12.1. For that purpose, we let B. and the u.’s be as in subsection 12.1,

where « is given by

n—2
= ———-5,(0)¢"
Then,
1 - 5 2*_1 .
Au, — aue + Be||ug|| 12 = 7o U in B
n (12.2.4)
u. =0 on 0B, /ug*dmzl
B
We let z. be the function in By(d) given by
n 1
z(x) = 51—5%(5:5) (12.2.5)
Then,
) ) 2 . ) 2/2*
Ve 2dv, + B. / v, | > / “d 12.2.6
fo 1Ty B ([ ) = 2 ([ ) (1226

Thanks to the Cartan expansion of a metric in geodesic normal coordinates,

/ zedv, = / z.dr + O </ \x|2z€dx>
Bo(9) Bo(6) Bo(9)

= 5%+1/u6d:c+5%+30 (/ \x|2u€d:c>
B B
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We have seen in subsection 12.1 that u. has its support in By(r.) where r. — 0 as e — 0. Hence

we can write that )
2
v, | =2 (1 4 0(1 (/ ed) 12.2.7
([ ) =725 ow) ( f et (1227)

Still thanks to the Cartan expansion of a metric in geodesic normal coordinates, and since z.
is radially symmetrical,

1 o
Valtdo, = [ |Valfde = SRy(0) [ (Ve Paied
Jo V2o = [ (V2P =GRy (0) [ (VP

+0 (/ |:)3|4|Vz€|2dx>
Bo(6)

where R stands for the Ricci curvature of g. By (12.2.4) we get that

/ \Vz|2de = /|Vu5|2dz
Bo(9) B

1-¢ B(/ d>2+ / 24
= — B, u.dx a | uldr
K, B B

Independently, since u, is radially symmetrical,

o o 1 ...
/ V2|2 r'e! de = 52/ |Vu.|* 2 2! dx = 52—5”/ |z|?| V. > dx
Bo(6) B n B
Noting that u. has its support in By(r.), where r. — 0 as € — 0, we also have that

[ a5z = 6" [ fol|Vucf2dz = o (/ \x|2\Vu€|2dm)
B B B

1—¢ 2

2 2

V2 |“dvg = _Be</ ed> / d
/30(5 Ve dv, K, g ta Pl

2
-2 5,(0) [ JeP IVl + o ( [ JaP1 V)

Similar arguments give that

/ Hdu, =1— —S / lz|2u® dx + o (/ || 2u® dx>
Bo(9)
and hence that

* 2/2* (n - 2)52 X )
</Bo(6) 2 dvg> =1-50) /B 2202 dz + 0 (/B 2|22 dx) (12.2.9)
Coming back to (12.2.6), we get with (12.2.7)-(12.2.9) that

/B w2da + (B. (14 0(1)) 6" - B.) </Buad:r)2

——S /m V| dx+o(/ 22|V da:) (12.2.10)

(n— )52 / 9 o (/ 9 o9 )
>~ 7
62k, Sg(()) |:)3| U dr + o |:)3| U dx

Hence,

(12.2.8)
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With the notations of subsection 12.1,

? Arwn_y ~2pn+2 ~2, n+2
(/Bugdx> :mu —l—o(,u e ) (12.2.11)

/u?dz :7’3/ w2dx
B B

Hence, by (12.1.41) and (12.1.55),

We also have that

16
/ugd:c = 0202 I juc| + o (1202 In ) (12.2.12)
B Wy
if n =4, and
4(n—1)
2, _ #n—=1) 5.9 22
/Buad:c— m—— T’E/LE—FO(T’E,LLa) (12.2.13)

if n > 5. Similarly,

. 2
/ |22 u® do = r? / 2202 do = r ,ue/ )\:L’|2 (,&g 1115(/15@) dx
(e

and thanks to (12.1.32) and (12.1.33), we have that

2*
2 [ ~5—1. /. > / 27,2%
T U, T der — z|*V7 dx
/Bo(,l—ls)| | <”€ e{fie) w7V

as € — 0. It is easily seen, see for instance Demengel and Hebey [11], that

nt2 (rE2\[ (=2
/ |z|2VE do = 2w, wn_l—( 2 TCF)

['(n)
and since
Do) = 2ty
n) = —
Wn 2
we have that 4
/ |2 *V5 dw = 771%
" (n — 2)wn
Hence,
. 4
/B|x|2u§ dv = W@[@ +o (r2i2) (12.2.14)
—_ wn

Integrating by parts, and thanks to (12.2.4), we also have that
[ JalP1Vuclde =n [ w2+ [ foPubueds
B B B

1 - E * *
:n/Bue . /B|x\2u§ dx—B€Hu€H1/B|x\2u§ d:c—l—oz/8|x\2u§dx
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Noting that

/ |z|*u.dz = r20 (/ uedx) and / |z|*uldz = o (/ u?dm)
B B B B

it follows that

4ws
[ Jal? Ve =
B

e e + o (22| n el ) + O (Brid) (12.2.15)

when n = 4, and

2
—4
[ 1ol Ve Pz = n —4)
B n —

et o (r2i2) + O (Bt ?) (12.2.16)

when n > 5. Let us assume first that n > 5. Plugging (12.2.11)-(12.2.16) into (12.2.10), and
thanks to the choice we made for «, we get that

R sn+2 n*n—1 n+2 An—2
(Bg(s € 4n2(n+2)2r5 He

>0 (r2i2) + o (Brt ™z ) + O (Bl ?)

)Aw

so that

Be +2 Adwd —npd—n -1 Bs 2
Zegnt 1) Ll s (ponpdnp < 12.2.1
<BE<S >4n2(n+2)2 (il B2) o 57 ) +0(12) (12.2.17)

By (12.1.42) and (12.1.56),
"B = 0(1)

Hence, (12.2.17) gives that
B
E e n+2
hrerilglf Baé >1

and thanks to (12.1.5) we get that

n—4)(n+2) n+42

hmme 5 2(n-2) > CnSg(o)%

where

4
oo 2n(n + 2)wi+”
n — T 2n_ n
W2 (47=3n(n — 2)(n — 4)) 72

This proves (12.2.3). Let us assume now that n = 4. Plugging (12.2.11)-(12.2.16) into (12.2.10),
and thanks to the choice we made for o, we get that

A

bl et o) o

£

By (12.1.43) and (12.1.56), - | 0
ro | Infi] = O(1
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Hence, (12.2.18) gives that

B
liminf —=6° > 1
im inf -0 >

e—0 <
and thanks to (12.1.4) we get that
1

B
liminf —— > S,(0)?
mint R 2 33000, 00

This proves (12.2.4).

12.3 The Riemannian case

As in subsection 12.2, we let (M, g) be a smooth compact Riemannian manifold of dimension
n > 4. We assume that the scalar curvature S, of g is such that maxgzen S; > 0. For e > 0

small, we let B. be the smallest B such that for all u € C*°(M),

1—c¢
K,

lullz+ < [IVull3 + Bllull;

As in subsection 12.1, it can be proved that

IVulls + Bellull} _ 1-¢
weC> (M)\{0} || w3 K,

With respect to the notations of the introduction, we have that

L 1— .
B.= -~ Bra(g) and B.(g) = (K,+¢)B_=

K, 1 Knte

The goal in this section is to prove that

sy e < b (s, )
11m su max
S P T el® = 2304w, \mert 9

when n = 4, and that

n+42

. ~ (n—4)(n+2) 2
limsup B.e 22 < (), (max S,
e—0 xeM
when n > 5, where
2+2
2n(n 4+ 2)wn "
Cn = 2n

+2

Wi (4n=3n(n — 2)(n — 4))"2

(12.3.1)

(12.3.2)

(12.3.3)

(12.3.4)

is as in subsections 12.1 and 12.2. As indicated at the end of this section, the second part

Theorem 4.4 follows from (12.3.3), (12.3.4), and what is proved in subsection 12.2.

Thanks to Theorem 4.1, B. — 400 as ¢ — 0. Independently, the LHS in (12.3.1) being
less than 1/K,, it easily follows from standard variational arguments, as in subsection 12.1,
that there exists a minimizer for the infimum in (12.3.1). With no risk of confusion with the
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notations of subsection 12.1, we denote by wu. this minimizer. We then get that for any ¢ > 0,
there exists u. € C1#(M), 0 < 8 < 1, such that

1 - Eu2*_1
K, °

Ague + Be|uc|[12. = (12.3.5)

and
/ Wdv, =1, u.>0in M (12.3.6)
M

where A, = —div,(V) is the Riemannian Laplacian, and ¥, € L>*(M), 0 < X, < 1, is such
that Y.u. = u.. We let z. be a point where u, is maximum, and set

1_n
pe * = uellos = ue(ze) (12.3.7)

Multiplying (12.3.5) by u. and integrating over M, we get with (12.3.6) that

A 1
Ba”“ﬁ”% < K

n

Since B. — +o0 as € — 0, it follows that ||u.||; — 0 as ¢ — 0. In particular, by Holder’s
inequality and (12.3.6), ||uc||2 — 0 as e — 0. Noting that

n+2
1:/u2*dv < e 2 /udv
o e g = He oy e

we also have that
lir% e =0 (12.3.8)

Independently, by Hebey and Vaugon [27], there exists B > 0 such that for any u € HZ(M),
lullz: < Kl Vullz + Bllullz
Taking u = u, in this inequality,
1= Bllull3 < Kol Va3 = 1 — & = Ko Be|Juclf}
and it follows that

lim B |[uc || = 0 (12.3.9)
As in section 8, there exists xy € M such that for any d > 0,
lim u?*dvg =1
e—0 Ba (6)
and
u, — 0 in CP (M\{zo}) (12.3.10)

as € goes to 0. According to what we just said, . — xy and p. — 0 as ¢ — 0. By (12.3.9),
noting that
L= fluellze < fluellze™ luells

we get that

n

A N2
lin% B.pie? |ueli =0 (12.3.11)
e—

In what follows we let exp,_be the exponential map at x.. There clearly exists ¢ > 0, indepen-
dent of €, such that for any ¢, exp,_ is a diffeomorphism from By(d) C IR" onto B, (d). As a
starting point in the proof of (12.3.3) and (12.3.4), we prove weak estimates on the u.’s.
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12.3.1 Weak Estimates

For = € By(u-16), we set
~ * - 21
Ge(x) = (exphg) (per) , ie(r) = p2 " ue (exp,, (new))

and Y. (z) = . (expms (,uex)). It is easily seen that

~ Al n_+2 ad ]_ - 5 ~2*_1
Ag.te + Bepe® |ue|12: = 7o U (12.3.12)
Moreover,
ﬁa(o) = HﬁaHoo =1 (12'3'13)
and if £ stands for the Euclidean metric of IR",
lim g = ¢ in C*(K) (12.3.14)

for any compact subset K of IR". Thanks to (12.3.11)-(12.3.14), we get by standard elliptic
theory, as developed in Gilbarg-Trudinger [22], that there exists some @ € C'(IR") such that
for any compact subset K of IR",

lim @ =@ in CHK) (12.3.15)

Clearly, u(0) = 1 and @ # 0. Moreover, it is easily seen that @ € D?(IR"), where D} (IR") is
the homogeneous Euclidean Sobolev space. By passing to the limit as € goes to 0 in (12.3.12),
according to (12.3.11), (12.3.14), and (12.3.15), we get that @ is a solution of

1 ..
Al = Efﬂ -1

By Caffarelli-Gidas-Spruck [8], and also Obata [32],

w2/n 1-3
i(z) = (1 + ’jT|x|2> (12.3.16)

Noting that @ is of norm 1 in L* (IR"), and that for any R > 0,

2* ~2*
u? dv, = / us dvg
/st(Rus) = e ¢

we get that
lim u dv, =1— / a* da
€20/ Ba. (Rpse) R™\Bo(R)
Hence,
lim lim u? dvy, =1 (12.3.17)

R—to0e=0JB, (Rue)

We claim now that the two following estimates hold. On the one hand that there exists C' > 0,
such that for any €, and any =,
dy(we, )2 tu(z) < C (12.3.18)
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where d, is the distance with respect to g. On the other hand that

lim lim  sup  dy(2e, )2 u(z) =0 (12.3.19)
R_>+OO€_)OIE€M\st(R,u5)

In order to prove (12.3.18), we set
ve(w) = dg(xax)%_lus(x)
and assume by contradiction that for some subsequence,

lim ol oo = +00 (12.3.20)

Let y. be some point in M where v, is maximum. By (12.3.10), y. — x¢ as € — 0, while by
(12.3.20),
lim dg(xev ye)

= +00 (12.3.21)
=0 p.

Fix now 0 > 0 small, and set

2

Q. = Ua(yE)meXpy_j (Bz.(9))

For x € €., define

0:(2) = ue(ye) e (exp,, (ue(y:) 77 0))

and
he(w) = (exp}g) (ue(ye)_ﬁx)

It easily follows from (12.3.20), since M is compact, that u.(y.) — +oo as € — 0. Hence,
lim h. = ¢ in C?(By(2)) (12.3.22)

where ¢ is the Euclidean metric. Independently, we have that

1—¢_o«
,U2—1

Ap 0 < iU (12.3.23)
Since v (y:) goes to +o00, for € small, and all z € By(2),
_ 2 1
dy (w2, exp,, (uc(ye) 7 2x)) > 5o (e. ve) (12.3.24)
This implies that
Oe(z) < 28 Udg(re,ye) ' Fuc(ye) 0. (exp,, (ue(y:) 7))
< 2%_1dg(xaaya)l_%ua(ya)_lva(ya)
so that for € small,
sup ¥.(z) <2371 (12.3.25)

€8y (2)
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By (12.3.21) and (12.3.24), given R > 0, and for € small,

By (2uc(ye)"72) () Be. (Rpue) = 0 (12.3.26)
Noting that

~2* 2%
vs dvp, = / u: dv
/30(2) Y e = D

it follows from (12.3.17) and (12.3.26) that

lim o2 dvy,, = (12.3.27)

e—0 Bo(2)
By (12.3.22), (12.3.23), (12.3.25), (12.3.27), and the De Giorgi-Nash-Moser iterative scheme we
get that
lim sup 0.(x) =0
£=02eBy(1)
But 9.(0) = 1, so that (12.3.20) must be false. This proves (12.3.18). In order to prove (12.3.19),
we let v, be as above, and proceed once more by contradiction. Then there exists y. € M and
ko > 0 such that
hm dg(I£> ya)
e—0 e
As above, we fix > 0 small, and set

= +oo and v.(y.) > ko

2

Qe = uc(y.) 2 exp;sl (Bz.(9))
For x € Q., we define

Ua(l') = Ua(ya)_lug (eXpys (ua(ya)_%l’))
and 2

he(z) = (expzs g) (Ua(ya)_mz)
Once again

1 - 5 ~9*_1
U€

Ahs 176 S

n

2
As when proving (12.3.18), for any x € BO(%kélfg)’

dy(re,22) > dy(ae, )
and
Te(w) = ue(ye) " v (2e)dy (e, 22) '3
where z. = exp,_ (us(ye)_%x). It follows from (12.3.18) that
be(7) < C22 'ky!
Noting that for R > 0, and for € small,

By, (G4 Tuely) 7 ) () B () = 0

we conclude as when proving (12.3.18) that (12.3.19) holds.

Now we need stronger estimates than (12.3.18) and (12.3.19). This is the subject of the
following subsection.
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12.3.2 Strong Estimates.1

In order to get stronger estimates than (12.3.18) and (12.3.19), we let hy € C*°(M) be such
that ho > 0, hg Z 0, hg = 0 in B,,(d). As a remark, it is easy to check that such a choice of
ho implies that Ay + hg is coercive. We define L, by

- 8 2*_2

u
K, °

1
Lou = Aju+ hou — U

and claim that L. satisfies the maximum principle in M\ B,_(Rpu.) for R > 0 large and ¢ > 0
small. Let indeed z € C'' (M\B,_(Rpu.)) be such that 2 > 0 on dB,_(Ru.) and L.z > 0. Set
2z~ = max(0, —z). Then,

0 < 2~ Lezdv,

/M\Brs(RMs)
= — |Vz_|2dvg—/
M\B.. (Rpie) M\B.. (Rpe)
l—¢ 252/ _—\2
U 27 )*dv
Ko JM\Bo.(Rus) © (=) dvy

ho(2™)2dv,

while, thanks to Holder’s inequality;,

2*—2 2*—2
/M\Bxgmug)ue (27) dvy < lluellZar s, e 127 22 0 1)
Thus,
0 < —[IVz7]1Zs (M\Ba. (Bue)) — IV hOZ—H%?(M\st(Rug))
- . s (12.3.28)
TR el o e 127 B
By (12.3.17),

i s ) = O

It follows that for any A > 0, there exists ¢4 > 0 and R4 > 0 such that for R > R4 and
e € (0,e4),

[[tel] 2+ (M\Ba. (Ruc)) = A
Let A > 0, given by the coercivity of A, + hg, be such that

)‘||Z_||2L2*(M\B,cs(Ru5)) < ||VZ_||%2(M\B,CE(RME)) + H\/}TOZ_H%Q(M\B%(RME))
Coming back to (12.3.28), we get that

— ]. — & *__
0 < 127122 A\ o (B1)) (TAQ 2 - A)

Choosing A > 0 small, this implies that 2= = 0. The claim is proved. Now, thanks to the De
Giorgi-Nash-Moser iterative scheme applied to A,u. < K, 'u? =1, we have that for any § > 0,
there exists C5 > 0 such that

sup U < Csllue|s (12.3.29)
M\ Bz (8)
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Taking 6 = dg, this implies that
Lou. <0 inM (12.3.30)

We let €y > 0 be such that A, + hy — ¢ is still coercive in M, and let G(x,y) be the Green
function of this operator. We set H(z) = G(z.,x). Given v € (0, 1), we have that

L.H™ VHP? o 1—c y,

i = V= V) e = (12.3.31)

where hy = (1 — v)eg + vhg. A standard property of the Green function (F.Robert, private
communication) is that there exists p > 0 and C' > 0 such that for any x € B,_(p)\{z.},
IVG(z., )| - 1
G(xe,x) —  dy(z., )

where d, is the distance with respect to g. We also have that
’dg(:za,:c)"_zG(xE,a:)} <C

for any x # x., where C' > 0 does not depend on ¢, and that
dy(ze, 2)" G (2., 2) > C

as soon as dy(z.,x) < 1o, where both ry > 0 and C > 0 do not depend on e. Then, for
z € By (p)\{7},
LaHl_V
Hl—l/

(x) > dy(ae, )72 (Cu(l — V) — IK;nEdg(Ig,x)%g*‘z)

and thanks to (12.3.19) we get that for R > 0 sufficiently large and e > 0 sufficiently small,

LEHI—V
Hl-v

In M\B,.(p), we have (12.3.10). Thus, by (12.3.31), and for € > 0 small,

>0 in By (p)\Ba. (Rpe) (12.3.32)

L.H'™ 1—¢ o
= - ngﬂ 2> 0 in M\B,.(p) (12.3.33)

>

Summarizing, it follows from (12.3.30), (12.3.32), and (12.3.33), that there exists R > 0,
depending on v, such that

Lou. <0< L.H™ in M\B,_ (Rpu.) (12.3.34)

By (12.3.15) and (12.3.16), there exists C' > 0 such that

w < Cueg—l)(l—%/)

H'™" on 0B, (Rpu.) (12.3.35)
The maximum principle, (12.3.34), and (12.3.35), then give that

2_1)(1-2v)

us(x) < Cpl dy (12, )20
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in M\B,_(Rpu.). Noting that this inequality is satisfied in B, (Ru.) thanks to (12.3.15) and
(12.3.16), we have proved that for any v € (0, 1), there exists C'(v) > 0 such that

ue(z) < Opl VG (3., 2)@mO-D) (12.3.36)

for any e > 0 and any x € M\{z.}. Now we claim that there actually exists C' > 0 such that
for any € > 0 and any =z € M,

1—n

pe 2dg(ve,z)" u(r) < C (12.3.37)

In other words, we claim that (12.3.36) holds with v = 0. We let Gy(z, y) be the Green function
of Ay + hy. Thanks to (12.3.29), noting that X.(x) = 1 if u.(z) # 0,

houa - B&H”Elea S O
in M when ¢ > 0 is small. For (y.) a sequence in M, we can then write that for ¢ > 0 small,
uclye) = [ Gola,ue) (Ague + houe) (2)dvy (2)
1-— «
= /., Coler. oy
+/M Go(l',ya) (houa - BEHu&HlZE) (l’)d’l}g(l')

(12.3.38)

1 .
< E/M GO(x7y€)ug 1dUg

We set
o, = us(y€>,u€ ? dg(xsa Ye
and let H. be such that H.(x) = Go(x,y.). We distinguish three cases.

Case 1: we assume that p;'d,(x.,y.) — R ase — 0, R € [0,+00). Then, thanks to
(12.3.18), (®.) is bounded.

Case 2: we assume that y. — yo as € — 0 where yg # 9. We let § > 0 be such that
26 < dy(xo,yo), and write that

)n—2

[, Goleyo v < [ Ha vy [ Ha

As above, standard properties of the Green function give that

Hoau?'d <C/ u? v
/B%(«n e o= fp e O

and that

H.au? tdv, < C dy(z,y.) > " " tdv
/M\Bm&) o 7T B 9) o e) e I

where C' > 0 is independent of e. Thanks to (12.3.36),

dg(z,y.)? "u? Ldv :o< %_1>
/M\Bxg(é) (T, Ye) e g He
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Independently, we can write that

2* -1 2*—1 2*—1
U dv, = / U dv, + U dv
/Bxg((n c T IBacue) © T JBac(O\Baw (o) I

251 51
U dv, = O( 2 )
/Brs(ﬂs) ‘ g He

while by (12.3.36), taking v > 0 sufficiently small,

By (12.3.15),

2% _1 o1
u: " dv :O<u2 >
/st(5)\st(us) = :

Coming back to (12.3.38), we get that (®.) is bounded.

Case 3: we assume that p-'dy(ze,y.) — +o00 and that dy(z.,y.) — 0 as ¢ — 0. We write
that

/M Golz, ye)ug*_ldvg = /QE Haug*_l + /M\QE Haug*_ldvg

where (. = B%(W)- As above, standard properties of the Green function and (12.3.36)
give that

n+42 -9

*— 1-2v n v— —n
/MGo(:c,ye)ug ldvggclu62( )dg(xsvyé‘)( 2 1)/9 dg(x,y€)2 dvy

£

+Cdy (., Y )" /M ug*_ldvg

Then,

nE2 (1-2v)

], Gole,yuZ ~dv, < O 7y, ) 7D

.
+Cdg (Iev ye)2 :ug

where C' > 0 does not depend on . Coming back to (12.3.38), we get that

n 1 2—(n+2)v
e\Ye E_Ed ey Ye -2 < — C
Ue(Ye)pte 2dy(ze,y:)" " < C <dg(x€7y€)> +

2

—5, we get once again that (®.) is

and since p-'dy(ze,y.) — +oo as ¢ — 0, taking v <
bounded.

Summarizing cases 1 to 3, we have proved that for any sequence (y.) in M, there exists C' > 0,
independent of ¢, such that

n

1-2 "
Ue(ye) e 2 dg(ze, ye) *<C
This proves (12.3.37).

Thanks to (12.3.15), (12.3.16), and (12.3.37), integrating (12.3.5) over M and letting ¢ — 0

give that
-z Wn—1

lir%B€]|u€]|1||Z€H1ug ? = A, (12.3.39)
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where A, is given by (12.1.36). Independently, let § > 0 small, and 1 be a smooth function
such that n = 0 in B,,(£) and 5 = 1 in M\B,,(8). Multiplying (12.3.5) by 7, and integrating
over M, we get with (12.3.10) that

Bluclly [ w¥edv, = O (Ju])

Since B. — 400 as € — 0, it follows that Sy n¥edvy — 0 as ¢ — 0. In particular,

/ S.dv, — 0
M\ By (8)

as € — 0. Since this holds for any ¢ > 0 small, and since 0 < ¥. < 1, we have proved that

/ 5. dv, — 0 (12.3.40)
M
as € — 0. We let r. > 0 be such that
Wn—1
Yedv, = ——r" 12.3.41
]| Sed, = e (12:3.41)

Then, r. — 0 as ¢ — 0, and thanks to (12.3.39),
lim Beu i * = A, (12.3.42)

Now, for x € By(dr-!), § > 0 small, we define

n_q

ge(x) = (expzsg) (rex) , Ge(z) =718 ue (expxs (7"5:6))

and . (z) = X, (expxs(razc)). Then,

N n N 1 — N
Byt + Belluc |12 S, = ——aZ' 7! (12.3.43)
Thanks to (12.3.41),
lir?jélp A S.dv,, < i (12.3.44)
We set
fle = ’;— (12.3.45)

It follows from (12.3.11) and (12.3.42) that i — 0 as ¢ — 0. Independently, (12.3.37) gives
that L
lz|" 2 . (x) < C (12.3.46)

where C' > 0 is independent of €. By (12.3.43),

1-n ~ 1-n n4ga 1l—¢ o 1-2  ox_
g (e ) + Belluclfie 22" 80 = —— (e *ae)” ! (12.3.47)
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and (12.3.42) gives that
241,12

B|lucljir2 " e 2 — A, (12.3.48)

ase — 0. Since 7. — 0 we also have that g. converges C? to the Euclidean metric in any compact

subset of the Euclidean space. By (12.3.46), the [Li_%ﬁg’s are bounded in any compact subset
of IR"\{0}. By (12.3.47) and (12.3.48) they satisfy an equation with bounded coefficients. We
can therefore assume that, up to a subsequence,

n

it %h. — H inCL (R"\{0}) (12.3.49)
where H is a solution of )
AH+ A2 =0 in IR"\{0} (12.3.50)

and 5 is such that 3. — ¥ in LP(IR™) for any p > 1. Thanks to (12.3.44), and since 3. < 1,
|1X]|cc < 1. By (12.3.46) we clearly have that

lz|"2H (z) < C (12.3.51)
for any x € IR"\{0}, where C' > 0 is independent of x.

We claim now that H can be computed explicitly. This is the subject of the following
subsection.

12.3.3 An explicit expression for H

We claim first that H can be expressed as

A

- |2

H(x) +H (12.3.52)
where )\ is real and H is smooth. For the sake of completeness, we prove this elementary claim
by using basic notions from the theory of harmonic functions. A possible reference for such
notions is the excellent Han and Lin [23]. As a preliminary remark, we claim that a bounded
harmonic function in [R™\B, n > 3, has a limit at infinity. In order to prove this preliminary
claim, one may proceed as follows. Let u be harmonic and bounded in IR™\B. Up to replacing
u by u+ A, A > 0 a suitable constant, we can assume that u is nonnegative. Given R > 1, we
let vr be the smooth function in By(R) such that Avg = 0 in By(R) and vg = u on 9By(R).
When |z| < R, vg(z) is given by the Poisson integral formula

VrR\T) = K Z, u dO’
R( ) /8 o (R) ( y) (y) (y)
The Poisson kernel K is such that K > 0 and

K d =1
Lo K ()0 (9)

for all |x| < R. In particular, we get that vg is nonnegative and such that for any = € By(R),
lvg| < K, where K is a bound for |u| in IR"\B. Given x and y two points in IR", and R large,
the Harnack inequality for harmonic functions gives that

vr(y) _
R—+o00 vR(x)

(12.3.53)
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We set now w = u — vg, and let r > 1. Clearly, |w(z)] < K,r"?|z|>™" on dBy(r), where
K, is the maximum of |w| over 9By(r). Since w and m% are harmonic in By(R)\By(r), the
maximum principle gives that |w(z)| < K,.r" 2|z ™ in By(R)\By(r). According to what we
said above, K, < 2K. Hence,

2K 2

j["=2

in By(R)\Bo(r). We fix  in IR". Since the vg(x)’s are bounded, there exists a sequence (Ry),
with the property that R, — +00 as k — 400, and there exists A € IR, such that vg, (x) — A
as k — +oo. Thanks to (12.3.53), we get that for any = € IR", vg, () — X as k — +o0.
Coming back to (12.3.54), taking R = Ry, and passing to the limit & — 400, we get that for
any x € IR™\By(r),

lu(z) —vg(z)| < (12.3.54)

2K 2
o2

u(z) = Al <

Then, u(z) — X as |z| — +oc, and this proves our preliminary claim. We let now u € C'(B)
be such that Au = —A,Y in B, and set H = H —u. Then AH = 0 in B\{0}. We let H be the

Kelvin transform of H given by
- 1 ~( =z
H(z)=——H|—
= st (77)

It is easily seen that AH = 0 in IR"\B. Moreover, thanks to (12.3.51), H is bounded. The
preliminary claim we just proved then gives that there exists A real such that

liIr(l] lz[""2H (z) = A
Let ® be given by

- |z |2

It is easily seen that ® is harmonic in B\{0}, and, thanks to what we just proved, we have that
®(x) = o(Jz|*™). Standard arguments, see Han and Lin [23], then give that 0 is a removable
singularity for ®. This proves that H can be expressed as in (12.3.52), and thus our claim.

For convenience, we write that

A
H(z) = a2 + —|x\2 + Hy(x) (12.3.55)
where Hy € C*(IR"™) is such that A
AHy = Ay(1—3) (12.3.56)
Let r > 0. By (12.3.15), (12.3.16) and (12.3.37),
[L;_%/ aZ vy, — w¥ tdx = —w"_lKnAn
Bo(r) R n

as ¢ — 0. Integrating (12.3.47) over By(r) and passing to the limit as ¢ — 0 we then get that

- O,Hdo + A, [ Sdz =14, (12.3.57)
OB (r) Bo(r) n
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Since [g, () Sdx — 0 as r — 0, and

— O,Hdo — (n — 2)\w,_1
8Bo(r)

as 7 — 0, it follows from (12.3.57) that

An
A= O] (12.3.58)

Noting that H > 0, we get with (12.3.58) that

A,
> -
H, 2n —2) on OB

By (12.3.56) and the maximum principle, since ||2|o < 1, we get that

Ap
.
Hy > 30 —2) in B

In particular, H(z) > 0 for any z € B\{0}, and it follows from (12.3.49) that for any 7, and
r9 such that 0 < r; < ry < 1, 4. > 0 in By(re)\By(r1) for € > 0 small. Then, 3. = 1 in
By (r2)\Bo(rq1) for € > 0 small, and we get that

memm z = |Bo(r2)\Bo(r1)|

where |By(r2)\Bo(r1)| is the Euclidean volume of By(r2)\By(r1). Letting 1 — 0 and ry — 1,

we then get that
/ Sdp = 7t
B n

We have ||2|o < 1, and [pn |2]dz < n'w,_y. Thus,

2 =1inB

A

(12.3.59)
¥ =0 in IR"\B

In particular, for any annulus A C IR"\B, we get with (12.3.46) that
are / dedv,, = pi 2 / S v, < C / S.dv,.
A A A
and since [, Yedv,, — [, Bdx as € — 0, we get with (12.3.59) that H = 0 in IR™\B. Since H
is C' in IR™\{0}, this implies that

A
n(n —2)
H(z) =0 in R™\B

H(z) = (2> = 1) +% (lz=1) nB

(12.3.60)
and we have an explicit expression for H.
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Thanks to (12.3.37),

—1-2 1-n

—1-2 1-=2
re 2 2 2

dv, — / Suodv
/M\st(rs) Y TV R

Y
Cr? / = g
e B dg(xe, 2)"2 K

< Cr‘"/ Y.dv
R TAY: S I

’f’g_n/ ng'Ug = / iadvgg - / 2dl’ = Wn-1
Bacg(rs) B B n

as € — 0, we get with (12.3.41) that

r " Y.dv 0
€ /M\st(rs) =g

IN

and since

as € — 0. Hence,
_1-n 1_=n

re 2 fle 2/ usdvg — 0
MN\Bg, (re)

as € — 0. Independently, given 6 > 0,

—1-2.1-2 L1-2 N
Te  *fle / Uedvg = fle / Usdvg,
By, (7<) Bo(6)

and it follows from (12.3.46) that

n

lim lim e 2 2 / udvy =0
6—0e—0 Ba (67¢)

At last,
1_n
u.dv, = (i 2/ U-dv;
/Bxsvs)\Bxg(érs) A N

and we get with (12.3.49) that for any ¢ € (0, 1),

_{_n 1_=n
25T 2
Te €

/ udv, — Hdzx
Bge (re)\Baz, (0re) B\Bo(4)

as ¢ — 0. Combining (12.3.61)-(12.3.63), letting § — 0, we get with (12.3.60) that

1-2 .1

Ry — [ Hdw =

Wn—1
Tt 4,
2n(n +2)

as € — 0. Then, combining (12.3.48) and (12.3.64),

Wp—1

as ¢ — 0.

(12.3.61)

(12.3.62)

(12.3.63)

(12.3.64)

(12.3.65)

Going on with the asymptotic study of 4., we prove sharp asymptotic estimates in the

following subsection.
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12.3.4 Strong Estimates.2

We claim that for any ¢ > 0 there exists C'(6) > 1 such that for € > 0 small and any = € By(9),

n—2

1 i . " m
CON\j2 + & o 2 + < ]2

with the property that C'(6) — 1 as 6 — 0. Let us define U, by

n—2

N 2
il
Udc(z) = (ﬁ)
fi2 + = ||

and let (y.) be a sequence in . Suppose that y. — yo as € — 0, yo # 0. Then, thanks to
(12.3.49) and (12.3.60),

U (y.)
Uc(y:)

In order to prove (12.3.66) it thus suffices to proves that if y. — 0 as ¢ — 0, then

=1+ 0(Jy:|""?)

.U (ye)
lim
e—0 UE(ya)

If ly.| < Chfi., (12.3.67) follows from (12.3.15). In order to prove (12.3.67), and so (12.3.66), we
are therefore left with the case where y. — 0 and % — 400 as € — 0. Let 0. be given by

1 (12.3.67)

A

b () = |ye| 2 e (|ye| @)
and let R R
ha(x) = §5(|ya|x) ) Ua(x) = ZE(|ya|x)
It is easily seen that
1 — & ~A2* 1

Lz nt2
ABEUE + Be(relyel) 2 ||uelioe = Tvs
n

and that h. — ¢ in C}_(IR") as ¢ — 0. We set
N .
() = (“) o
e

~ 2
N n 5 nt2 1= ]. — & NOK
Aﬁgwa + |ya| Bera : He ? ||u5||105 = T <|ZE|> wg ! (12'3‘68)
n €

Then,

Thanks to (12.3.15) and (12.3.37),

( fi. )”‘2 0 ( fic x) i) (12.3.69)

A A
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in Cp(IR") as ¢ — 0, and
|lz|" 2. (z) < C (12.3.70)

Thanks to (12.3.64) and (12.3.65), we also have that

n+2

el " Ber=™ i uefly — 0 (12.3.71)

as € — 0. Noting that by (12.3.70), w. is bounded in any compact subset of IR"\{0}, it follows
from standard elliptic theory, from (12.3.68), and (12.3.71), that w. — ¥ in C}_(IR"\{0}),
where W is a solution of AV = 0 in IR"\{0}. We let § > 0 small, and we integrate (12.3.68)
over By(§). Then

. A nt2 g n
- Obedoy, + |ye|"Bere® fie 2 ||uelly / oedvy,
0By (9) Bo(9)

12.3.72
1—5<ﬂa>2 ~2% -1 ( )
= / w, ~duy,
K \lgel ) /80@) :
It is easily seen that
LN 2 Lo\ n—2 . -1
(150) oo 0= Lo (1) 2 (f50)) 0
el ) JBo(s) = sty \ \ |y |Ye |
Thanks to (12.3.69) and (12.3.70) we then get that
N2
< Fe ) / WX vy — | @ lda (12.3.73)
Yel ) JBocd) © Jme
as € — 0. Thanks to (12.3.71) we have that
A nt2 q_n
| Bora® i3 ||u€||1/ o.dv; — 0 (12.3.74)
Bo(5) :
as € — 0, and since izg — & as € — 0, we also have that
/ 0, ib.do; — / 0, do (12.3.75)
0o (8) < Joses)
as ¢ — 0. Combining (12.3.72)-(12.3.75), it follows that
[ owdo +i/ i ldy = 0
oBoe) ~ ¢ Ky Jme
and thus that w
/ 8, Wdoe + ——LA, =0 (12.3.76)
0B, (6) n
As in subsection 12.1, (12.3.70) and (12.3.76) imply that
Ap

U(x) =

n(n — 2)|x|"—2
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In particular, taking = = y./|y.|, we get that for any sequence (y.) such that y. — 0 and

el

7 — 400 as € — 0,
(>

n—2~1=% An n— %—1
g2 fie i (y.) — ol = 2"y (12.3.77)

n—2)
as € — 0. This proves (12.3.67), and thus also (12.3.66).

From now on, we let By be the Euclidean ball By(2), and let n € C°(By) be a radially
symmetrical function such that n =1 in B. We want to estimate

I= / (i) de and J = / IV (i) Pd (12.3.78)
BQ Bz
We start with 1.

12.3.5 An expansion for [z (7i.)? dz as ¢ — 0

We write that
~ o A D* ~ o
der = / uz dx + U ) dx
/BZ(nue) U 82\8(77 c)

_ /Bag*a— ,/\g€|)dx+/lga§*dvgs+/Bz\8(na€)2*dx

where |g.| is the determinant of the components of . in Euclidean coordinates. Thanks to the
Cartan expansion of a metric in geodesic normal coordinates, we can write that

2
VIgel = 1 = 2Ry (e )a'? +r20(|af)

where the R;;’s are the components of the Ricci curvature of ¢ in the exponential chart at ..

Then,
2

/ (ni.)* do = / a? dvg, + T—ERU(:L"E)/ a¥ 22l da
By 5 B

0 (12.3.79)
+r30 (/ |x\3ﬂ§*dx) +/ (ni)? da
B B2\B
Thanks to (12.3.46),
[ i) dw = O(z) = ofji2™?) (12.3.80)
B2\B
Similarly, it is easily seen that
/B @2 dv,, = 1+ o(i"?) (12.3.81)
By (12.3.15),
02 i (per) — ala) (12.3.82)

in CL_(IR"), where @ is the fundamental solution given by (12.3.16). Combining this estimate
with (12.3.46), it follows that

r;”/ 230 do = o(r?ji?) (12.3.83)
B
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and that
r2

. S N
" Ryte) [ atatde = SO ([ an) 202 4 o2i2)
B n

6 6n
Noting that

x 4
/ 2|20 dr = L — n*K,
" (n— 2)w72/"
we get that
r2 ~2% i j nk, 22 2,2
éRij(xE)/Bua 'l dr = 5 Sg(zo)rziz + o(rZfiZ) (12.3.84)

Combining (12.3.79)-(12.3.81), (12.3.83), and (12.3.84), it follows that

K, N N .
1= 1+ 228, (o) + ofr2d) + o{fi2 ™) (12.3.85)
This is the expansion we were looking for.

We now compute an expansion for J. This is the subject of the following subsection.

12.3.6 An expansion for [z |V(ni.)|’dz as e — 0
We write that ) )
190 e = [ (67 = 690, (yi) 0y (ni)da
Bz BZ
+ [ V)3 0= g+ [ 190 vy,

where the subscripts £ and g. refer to the metric with respect to which the expression has to be
understood. Thanks to (12.3.43), namely the equation satisfied by the 1.’s, we can write that

[ i) Pdvg, = [ [nfiddvg, + [ oA id,

(12.3.86)

L. A L (12.3.87)
= o [ a2 dvg, = Belluclo T [ v + [ Vo,
Thanks to (12.3.46) and (12.3.59),
/ [Vnl*aZdvg, = O (/ iaﬁgdvgs>
. g\ (12.3.88)
~n—2 ~n—2
= [, O Zed’UAs =0 c
o[, San) = o)
Independently, we can write that
/B il d, = /B @2 dv,, + /B T g, = 10l ) (12.3.89)
At last, we write that
Belucll ™ [ nfiedv;,
5 (12.3.90)

_ an=2 | Tlm5 A1-% B2 A1-3 24 d
= Mg Te fiz 7 [Juelx eTe He 5 1 U:AVg,
2
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By (12.3.46),
1_n
lim lim i~ % [ idvg, =0
(51—I>r(%51£>1(1)’u 30(5)u Yo
With such a relation, it easily follows from (12.3.49) and (12.3.60) that

. Al ~ Wn—1
lim fie 2/ 20dv; :/Hd =" A, 12.3.91
fim e Jp, e = J HAr = ) 2390

By (12.3.64), (12.3.65), and (12.3.91), coming back to (12.3.90), we then get that

il f2pme2 (2 (12.3.92)

B g+1/ 20 du. — —nml
€Hu€H1T6 an UQVg, 2n(n+2) nle

Finally, thanks to (12.3.88), (12.3.89), and (12.3.92), we get with (12.3.87) that

n

)| *dvg, = - A2 + o 12.3.
Jo, 170 Py, = == = AR o) (12:3.93)

Concerning the first term in the RHS of (12.3.86), we claim that

/B (67 = §2)0i(na)0; (i) da = o(r2i) (12.3.94)
if n > 5, and that
[ 0 = G)0i(ic) 0y (v ) do = o(r2?| n i (12.3.95)

if n = 4. We assume first that n > 5. Thanks to the Cartan expansion of a metric in geodesic
normal coordinates, we can write that

2
i i Tepi g a
47 = 1 = ZRiug (2)a%a + 130 (al)

where the R;;i;’s are the components of the Riemann curvature tensor of g in the exponential
chart at x., and an index is raised with the metric. Let 4 be given by (12.3.16). Since n and u
are radially symmetrical,

R o (w2)0; (n(fie)a(x)) 05 (n(frez)(x)) 2% = 0 (12.3.96)

Let R > 0. Thanks to (12.3.82), writing that [5, = [5,(ra.) t J5,\Bo(Ra.)» 1t 18 €asily seen with
(12.3.96) that that for any R > 0,

(69 = 4210, (v )

(12.3.97)
<O [ laPIV [ dey, +o(r22)
where C' > 0 does not depend on ¢ and R. We write that
1 2 NP
2 JB\Bo (R =V ez, (12.3.98)
S |2 |*|Vnl;, aZdvg, + o) | [0?| V|5 dvg.
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As in (12.3.88),

/B oy [Vl 82dvg, = o(AZ) (12.3.99)
2 0 €

Independently, thanks to (12.3.82),

2, 2. N A2 A2 ~2
L [P0l doy, = eni2 and [ pafiZdoy, = e

BO (R[Ls

where ep is such that
lim limerp =0

R—+o00e—0
Hence,
/ \$|2U2|V@e\ggdvgs :/ |$\2ﬁ2ﬂsAgs@edU95
B\ Bo (Rjie B \Bo (Rjic
2\ oi fie) 2\Bo (Rfie) (12.3.100)
—— A, (|2 n?) 02 dv,. + epii?
2 Bz\Bo(RﬂE) gs(| | /)7) 5 ge R/‘j“a
Thanks to (12.3.43), namely the equation satisfied by the 4.’s,
/ 2P Ay, iy, < C [ 262 du
B2\Bo (Rjic) B2 \Bo(Rfie)
- 2+
= G [ el (i i) e
0 Tie 0
so that, by (12.3.46),
/BZ\BO(Rﬂ ) |z*n* 0. Ay, Gi.dvy, = epfi? (12.3.101)
where € is as above. Similarly,
A, (|z)n?)dldv,.| < C 2dx
Loy Do laPoyizdeg | < [
2
. LBl .
= Ci /Bo(%)\Bow) <M€2 ua(uax» e
He
and still thanks to (12.3.46), since n > 5, we get that
Loy Sl = i (12.3.102)

where e is as above. Combining (12.3.97)-(12.3.102) we get that
[ (57 = G2)0,mt)0,(ri ) = enrid + ols%2)
B

and since R is arbitrary, this proves (12.3.94). In order to prove (12.3.95), there we have n = 4,
we need to be more subtle. Still thanks to the Cartan expansion of a metric in geodesic normal

100



coordinates, we can write that
[ 37 = 2)0r(ni )05y
2
< Crf/B R 05" (2)0i(ni) 0 (ni ) w2’ du,, (12.3.103)
2

o ([ Ja 1V i) v, )

where C' > 0 does not depend on e. Similar developments to the ones we made when n > 5
give that

[, 2PV i) 2 dvs, = O (72 ] ) (12.3.104)
2
when n = 4. Independently, thanks to (12.3.96),
| R ()01 (n) 0y 7)o,
> (12.3.105)
< R0 3% (22)0s () 0; (ntie ) a2 dvy, + o( 2
< R @)04(01.)2, () s s, + o(i)

where R > 0 is fixed. Combining (12.3.103)-(12.3.105), we then get that for R > 0,
[, (67 = 49)01(na)d; (ni.)da
2

o (12.3.106)
<ot R’ (22)0:(12) 0 (mic)aa  dug, + o(r?02| In jic])
BZ\BO(Rﬂs)

Let K > 0 be an upper bound for the sectional curvature of g. Then,
Ria J 0, 0.)0.: (0t e ﬁd X
/32\30(1%/15) 5’ (22)0i(nti=)0; (=) x 2” dvg,

<K \Y )2 —(V 0:),v)% ) dug
T JB2\Bo(Rpe) (| (Izlmie)lg, = (Vllnie) V)gs) Y-

vo ([ 12PIV a2 vy,

where v = &, and thanks to (12.3.104), we get that
R 57 (22)0: (n.)0; (nie )z xP dv;
Loy B )00 (i) v,

<K v,flj‘ AE%—V']J‘ Ag,l/% dA_i_ T2A21nA€
o B2\Bo (R ) (| (‘ |7]U )‘gs ( (‘ |7]U ) )gs) Yge O( EILLE‘ K |)

(12.3.107)

It is easily seen that

/ZSQ\BO(Rﬂs) (IV(Jlmic)|?, = (V(|zlnit), v)2,) dv,.

2 i) 12 ; 2 2492
- V(lzla.)[; — (V(lz[ae), v);, ) dvg. + ofr
()| (IV(jlao) 2, = (V(|alic), v)7, ) dvg. + o(r2ii2)

(12.3.108)
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Combining (12.3.106)-(12.3.108), it follows that

.67 = g0ut.) 0y

(12.3.109)
<02/ 2(1V(lz]a) |2 — (V(|zla), )2 ) dvs. + o(r2i2| 1n fi.
=l BQ\BO(R,&E)TI (| (lelae)l3, — (V(Jola.) V)gs) vg. + o(rZjiz| In fic|)
Letting 4. be as in (12.3.12), @, is given by
. nq
Ua(l’) = :U“€2 ua(,uax)
we have that
/ (1Yl — (V(J2lie), v)2, ) dug,
e (12 3 110)

We write now that

~ 2 ~ N2 5 9
Z V(lzlu)|z2 — (V(lz|u.), v)s ) dvug
/Bou%)\gom)nmn (IV (2l ), — (V(|ela.), v)2.) dug,
<C Vx%]? do- +/ A§E2£L’1~LA~ ,f(j"a d’U~
<O iy Vo + [ e lafie g el
~ 2 - 2 o
B )" (V(|z|te), v)g, dvg. + C usdvg,
Bou—i)\zao(mn(”e PV jale). V). vg BaENBo(E)
and since ,
Ag. (Jz]te) = |2|Ag.te + GAg, x| — mwa&‘%s
we get that
A~ 2 o 2 ~ 2
z V(lzlu:)|z — (V(lz|u.),v)s ) dvog
/Bo(%)\so(}z)n(’ua) (| (lzlae)l. — (V(|z[ae) )gg) Je
<C V(|z|??)|cdoe + )2 225 A dido-
L P IR P s R
+/ ! x 21"&2A~5 T d,U~s+C anU~E
Bo(ﬁ—@\zso(mn(“a Flalics. (ja)dvg Bo(ZN\Bo(L) © 7
—2 1.2) 20 (Vi 2) 5. dv;
BO(%)\BO(R) 77(/*’/8 ) 5( € )95 ge
~ 2 - - \2
N € Vi y L ~5—|—’U, d’U*E
Bo(Z)\Bo(R) n(fier)” ((Viie, 2); e) dvg

Noting that

|2[Ag.(2]) < =(n = 1) + Cp2laf?
and since X
;5&2*_1

. ne2 N
Ag e + Bepte™ fJuell X = 1
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it follows from the above computations that

Ae 2 \V4 U 2 _ \V4 ~€’ 2 du-
~/BO(%)\B()(R) 77(,“/ x> (| (‘ZI:|U )‘gs ( (‘ZI:|U ) V>96) ’Ugs

<(C V(|z|?0?)|cdoe + C x?a% dv;
aBO(R)\ (Jz|*aZ)|edoe BO(%)\BO(R)|‘ e

+C’7‘2/ widvs, + C w2dvg,
S JBuENBo(R) T 7 Bo(Z)M\Bo() © 7

—(n—4 / 1.7) >0 dvg,
( ) ARER n(fiex) iz dvg
~ 2 ~ ~ \2
— x)* (Ve z)z. + 2a.)” dug,
/BO(%)\BO(R)U(Na ) (( e )g a) g
and hence that

e i Ue 5 le ), 2 ) dv;
/Bo(ﬂ—zs)\Bo(R) n(fte) (|V(|Zv|u )Nz, — (V(|z].) y)gs) Vs,

<C V(|z|*@?)|edoe + C z|?a? dvg,
VP Nedoe € [ oy

et [ @, + C Wdv;,
Bo(7)\Bo(R) Bo(2)\Bo(&)

By (12.3.82),

L 19 a8 el < O
while by (12.3.43),

/ 2?32 dvg, < C

\BO(R

/ @dvg, = O(|Inc])

\BO(R

/ @dv,, < C
Bo(2)\Bo( )

when n = 4. Combining (12.3.109)-(12.3.113), it follows that when n = 4,

(69 = 32)0,(nie) s (i e = o022 e

(12.3.111)

(12.3.112)

(12.3.113)

and this proves (12.3.95). Still when estimating J, we now have to deal with the second term

in the RHS of (12.3.86). We claim here that

_(n=2)(n+2)
6(n —4)

[ 9l (1 = gD Sy (o) + o(r2ji2)

when n > 5, and that

N N 8ws
S Va0l (1 = Viad)de = 528, o) 22 il + o2 n ]
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when n = 4. In order to prove this claim, we write that

2
A ra i .7
|ga| =1- ERU(IL’E)ZB "LJ + ’I“SO(|ZL'|3)

where the R;;’s are the components of the Ricci curvature of g in the exponential chart at ..

Then,

[, V@), (= gl

r

2
= = Ry(o) [ VO aiidvs, + 520 ([ 121V i) de )
6 Bz 9e 82 ge

As above,
/B [2[*V (2c) 13, dvg, = O] In fi|)
2
when n =4, and
[, eIV a2 dv, = O(i2)
2
when n > 5. Similarly, it is easily seen that
Rig(ae) [ V(i) Bt o,
B2
= Ri(ee) [ iPIV Ll a'sduy, + o(2)
B2
Then,
Ryj(xe) / 0|Vt |3 2’ dvg,
B2
o 1 o
= Rij() / g dea' s’ dvg, — / Ay (*Ryj ()22 )il dvg,
B> 2 /5,
By (12.3.43),
Rij(xe) / NNy da' s dvg,
B2
1-— . i
= —gRij(iEa) /B2 a2 o' al dv,,

K,
+1 2% o o]
Rij(xe)‘/B 7] Esuex X dvﬁs
2

~Belluclir?
As when getting (12.3.92),
Blucllrd Ry [ P Seinea’a?dvy, = o(72)
while, thanks to (12.3.46) and (12.3.82),

Rij(x€> /52 n2ﬂg*xil’jd1}gs _ Sg(xo) / n

n

z|2a* dx + o(4?)
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Noting that
/ lz|2a% dx = n*K,
it follows that o
Rij(z.) /B PNy Ger'zd dvy, = nkK,S,(o)i2 + o(i2) (12.3.121)
2
Independently,

[ 8 0 Ry )a'e yildvy, = 28,(x0) (1+ 0(1) [ i2de +o(i2)

When n > 5, we get with (12.3.46) and (12.3.82) that
/ W2dr = 2 / #dx + o(ji2)
B R"

Since, see (12.1.41),

/ a*dr = An—1)
" n—4

it follows that when n > 5,

i d\g 8(n —1)
/Bz Ag. (0* Rij(xe)x'a? yaZdvy, = T4

Combining (12.3.116) and (12.3.118)-(12.3.122), we get that when n > 5,

Sy (o) + (/%) (12.3.122)

2

N ~ n”—4 N N
o, 19 ) (= 1l = o= )i + o2

and this proves (12.3.114). When n = 4, we use (12.3.66). As in (12.1.55), it follows from
(12.3.66) that

16
/agdx = =502 i) + o (2| n i) (12.3.123)
B W4
Combining (12.3.116), (12.3.117), (12.3.119)-(12.3.121), and (12.3.123), we get that when n = 4,
X N 8w N N N N
[ 19 G = Vi = 3228, o) 2 n el + o232 )
2

This proves (12.3.115). Summarizing, it follows from (12.3.86), (12.3.93)-(12.3.95), (12.3.114),
and (12.3.115) that

1—¢ Wnp—1 _
J = _ n A2 An—2
K, 2n(n+2) e 125,120
n? —4 . . e o
prCEy Sy(wo)rZi2 + o(rZji2) + o(i2™?)
when n > 5, and that
1—¢ Wn—1 2 Ap—2
K, 2n(n+2) (12.3.125)
8w R R R R . o
5, Salw)r2 | n fie| 4 o(rEE| n el ) + o)
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when n = 4.

Now the proof of (12.3.4) and (12.3.5) proceeds as follows. We write that

2

N 2 < A\ (2
(/32(7’“5) dx) _Kn/BQ|V(77u€)\ dx

namely that /%?" < K,,.J. Thanks to (12.3.85), (12.3.124), and (12.3.125), we then get that

Wn—1 2 ~n—2
— _A’K,
e 2n(n+2) " e
. (12.3.126)
< 2R S, (ao) 2 + olr2i) + ol )
n—
when n > 5, and
KA
8uog (12.3.127)
< 3—MKESg($O)Ta2ﬂ?| In fi | + 0(T§ﬂ§| In fi.|) + 0(:&5)

when n = 4. A direct consequence of (12.3.126) and (12.3.127) is that Sy(zo) > 0. We claim
that S,(zo) > 0. Let us assume first that n > 5. Writing that

_2_ n-0)(nt2) A \ T3 4-n
(Bert2) 7 = (6( o Ba) " enhy?
it follows from (12.3.65) and (12.2.3) that

. d-n o
lim sup en=27r. < 400 (12.3.128)

e—0

Thanks to (12.3.126), assuming that S,(x¢) = 0, we then get with (12.3.128) that
~2—m ~d—mn ~2—p\ =2
e = o (i) = o((ei2)"2)
Hence, £1>™" — 0 as € — 0, so that

2 = o (r263%)
and 722" — 0 as ¢ — 0 thanks to (12.3.128). Coming back to (12.3.126), we get a contra-
diction. This proves the claim that Sy(x¢) > 0 in the case n > 5. When n = 4, (12.3.65) and
(12.2.2) give that
limsup r?|Ine| < +o0 (12.3.129)
e—0

Combining (12.3.127) and (12.3.129), we can write that

ellne| < Cp2|In fi.|

1 :0( 1A> (12.3.130)

and this implies that




Coming back to (12.3.127), assuming that Sy(x¢) = 0, we get that

it o) < o )

|Ine|

48

a contradiction thanks to (12.3.130). This proves the claim that S,(z) > 0 in the case n = 4.
Then it follows from (12.3.126) and (12.3.127) that

hmiéqfrgug "> 0 (12.3.131)
when n > 5, and
1im151fr§| Inj.| >0 (12.3.132)

when n = 4. In particular, 472 = O(r242) when n > 5, and 2 = O(r2i2|In ji.|) when n = 4.
Coming back to (12.3.126) and (12.3.127) we then get that

e=0(r?p2) whenn >5 and € = O(r2i2|In fi.|) whenn = 4 (12.3.133)

We now consider the sharp inequality of subsection 12.1. We choose a to be given by the
equation a = 4(’;—__21)59(3:0), and apply this inequality to the function
x

pe() = n(-)ue (exp,, (¢))

€

where 7 is as above. The change of variable x = r.y then gives that

1—c¢ R *
K, </32("“5) dx)
n—2

</ Vi) — Sy (o) / ids (12.3.134)

2
+B.rit? (/ nﬂed:c>
B2

Thanks to (12.3.85)-(12.3.89), (12.3.94), (12.3.95), (12.3.114), and (12.3.115), it follows from
(12.3.134) that

N n 2
B ||luc|[yré +1/ 7]21]€dvg5 — B </ mlfdx> T?+2
Bz BQ
n—2 n—2 . 12.3.135)
<72y 2.2 N7 2 o 2/ 2424 (12.3.
= —4 (SL’(])T He — 4(72, — 1) g(l’o)’/’E By nu.ar
+o(r2ii?) + o(iZ™?)

when n > 5, and

2
- 24 . .
B.||ug |12 / n*t.dv;. — B. (/ nuad:v) it
Bz BZ

8w n—2 .
< 3—35 (zo)r? 2| In fie| — msg(%)@ /32 R (12.3.136)

+o(r2p2) In fi|) + o(a2~?)
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when n = 4. We have already seen, see (12.3.122) and (12.3.123), that

-1
, razas = 2= gk o2

when n > 5, and

R 16ws .
/B Pilde = ——2 (2| In fic| + o(f2| In ic])
2

when n = 4. Hence,

n—2
n—4

n—2
4(n—1)

Sg(:co)rf/B n*uldr = Sy(wo)r2i? + o(rZi?) (12.3.137)
2

when n > 5, and

n—2 2 242
Tn = 1)59(1'0)7’5 /8277 uZdx

80&)3
3wy

when n = 4. Independently, similar computations to the ones we made to get (12.3.64) give
that

(12.3.138)
~—Sg(wo)rZjiZ] n jie| + o(rZiZ| In fic|)

el / ni.dvg, = ( / Hd:c) P22 4 oo(ri 2 pn?) (12.3.139)

and that L
/ ni.dr = </ de) pz 0(,u__1) (12.3.140)

We have already seen that [; Hdz > 0. We also have that "% = O(r242) when n > 5, and
@2 = O(r?fi2|In fi.|) when n = 4. Combining (12.3.135)—(12.3.140) we then get that

B. — B. 4+ o(B.) < o(r-" ™) (12.3.141)
when n > 5, and X

B. — B. +0(B.) < o(r.*Inji.|) (12.3.142)
when n = 4. It easily follows from (12.3.131) and (12.3.133) that

(n—4)(n+2)

T—nl&;l— e 2n-2) = O(l) (12.3.143)

)

when n > 5, and it easily follows from (12.3.132) and (12.3.133) that
r=Y In .|| Ine| = = O(1) (12.3.144)

Combining (12.3.140)-(12.3.144), we then get with (12.1.4) and (12.1.5) that

A (n=4)(n+2) n+t2

limsup B.e 202 < (C,,Sy(x) 2 (12.3.145)
e—0
when n > 5, and R
1
li < S, (x0)3 12.3.146
MSUD TE S Sa0m, o (o) ( )
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when n = 4, where

4
oo 2n(n + 2)wi+”
n — 2n_ -
W2 (4n=3n(n — 2)(n — 4))"2

Thanks to the results of subsection 12.2, namely (12.2.2) and (12.2.3), it follows from (12.3.145)
and (12.3.146) that
Sy(xo) = max Sy(x) (12.3.147)

Combining (12.3.145)-(12.3.147) we then get that (12.3.3) and (12.3.4) are proved.

It is easily seen that the second part of Theorem 4.4 follows from the results of subsections
12.2 and 12.3. Combining (12.2.2)-(12.2.3) and (12.3.3)-(12.3.4), we indeed do get that

i 2~ L (s, )
im = max
=0 |Ingl®  2304ws \zed ¢

when n = 4, and
. (-8t ni2
lim B.e” 22 = (), (max.S,
e—0 reM

when n > 5. Thanks to (12.3.2), this ends the proof of the second part of Theorem 4.4.

Appendix

We prove Theorem 4.3 in this appendix, following Druet [16], private communication. We
let (M,g) be a smooth compact Riemannian manifold of dimension n = 4 or n = 5, and of
nonpositive scalar curvature. We let also B. be the smallest B such that for any v € H(M),

1—=¢
K,

lull2 < [IVull3 + Bllullt

In order to prove Theorem 4.3, it suffices to prove that B. is bounded as ¢ — 0. We proceed
here by contradiction, and assume that B, — 400 as ¢ — 0. The analysis of the preceding
section can then be applied. In particular, the following holds. For any € > 0, there exists
u. € CH(M), 0 < B <1, u. >0, such that

1 - Eu2*_1
K, °

Agua‘l'éenuanlxe = (A1)

and
/ u? dvy, =1 (A2)
M

where A, = —div,(V) is the Riemannian Laplacian, and ¥, € L>*(M), 0 < ¥, < 1, is such
that Y.u. = u.. We let z. be a point where u, is maximum, and set

1—
pe * = Jluelloo = ue(ze) (A3)
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Then p. — 0 as e — 0, and u. — 0 in C (M \{xo}) as € — 0, where x is the limit of the z.’s
as ¢ — 0. Moreover,

lim 2 e (exp,, (o)) = Vo) (A4)
in CL_(IR™) N D?(IR"), where V; : IR — IR is given by

2/n -3
Vo(X) = (1 + X2>

We also have that the following sharp C%estimate holds: there exists C' > 0 such that for any

€ > 0 and any =,
1_n

He 2dg(ata,at)"_2u5(x) <C (A5)
We let r. be such that

Wn-1
Ye.dv, = n A6
[ Sedv, ==t (A6)

Then 7. — 0 ase — 0, and p.ro' — 0 as e — 0.
From now on, we let 7 : [0,2] — IR be a smooth function such that n = 1in [0, 1], and n =0
in [2,2]. We define

ﬂ$ﬂ=n<%@39>%uﬁ (A7)

Te

Given y € M, 0 € IR, and p > 0, we let V{, 4, be the function given by

o [do(y,x 1—e)Y2d,(y,x
Voo (a) = (14 05 (22 )y (L= (00)) (49
where V; is as above. For € > 0 small, we let also A. be the set of the (y, 0, u)’s which are such
that d 1 1 1
W) oy Loty Llogel
e 2 W 2 2

We define the functional

Je(y,0, 1) = / ’V(ﬁa - V(yﬂ,u))‘z dvg

M

and let (y.,60:,7i.) € A be such that

']5 (yfiv 957 ﬁa) = Il’liIl J€(y7 ‘97 M) (A9>
(yve#)eAs
We claim that y
M_)O’#_)ljga_)() (A10)
He He

as € — 0. In order to prove this claim, we proceed as follows. We know, thanks to (A4), that
Jo(2,0,p1:) — 0 as € — 0. Hence, J.(y.,0.,7.) — 0 as ¢ — 0. Up to a subsequence, we may
assume that

d [ShadS) €
Wlete) gyt oy 0,0,
He He
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as € — 0. We write that
J(ye, 0.1 :/ Vi.|%d / YV, g [2d —2/ Vi, Vi 0.21)d
(y i) " Vi |[*dv, + " IV Viy. 6| "dvg " ( u (ysﬂs,us)) Yg

where (.,.) is the pointwise scalar product with respect to g. In particular,

B 2
Jo(e, 02 71) = ([|Vitello = 1V Vi 0.7, |I2)

Noting that 77, — 0 as € — 0, it is easy to check that
IVVigeo.qllz = (14 00)* K.

as € — 0. We also have that ||Vi.||3 — K, ' as e — 0. Hence, 6 = 0, and

/M (Viie, VViy. 0.7.) ) dvg — KL

n

as € — 0. It is easily checked that

lim | (Vite, VViy...7,) ) dv,

e—0

— lim lim (Vite, VWi 0.7, ) v

R—+400e—0 Bazo (Rpue)

and that

lim lim (Viie, VViy..0.7,) ) dv,

R—+o00e—0 By, (Rpe)

=G [ (VWG = yol), VVa(a])) de

where yo = p2 ' exp, ! (y.). Hence,

> 1
cF! /]Rn (VVo(Cilz = gol), VVo(lzl)) dx = o=

This implies in turn that C; = 1 and that yo = 0, so that (A10) is proved. From now on, we
let

Thanks to (A10), the analysis of subsection 12.3 can be applied to v.. In particular, if we let

.
:uez_e
Te

then fi. — 0 as ¢ — 0, and there exists C' > 0 such that for any x,

n

jo[" 2 P ve(x) < C (A11)
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Moreover,
lim i: *v. = H in Cj,, (IR"\{0}) (A12)

where, if B = By(1) is the unit ball in IR",

A A
H(z) = ——(|z* "= 1)+ == (|z|*-1) inB
(@) = s (Jaf 7 = 1)+ 52 (1 1) )
H(z) =0 in IR"\B
and 2_q
A, =n(n—2)2" 2wy (A14)
In addition,
a 1 - *
A0+ O = — s (A15)
where Y. (z) = %, (expys (7"5:6)) is such that
lim . = 1lg (A16)

<P
in Lj,,

(IR™) for all p > 1, 1z being the characteristic function of B, and C. > 0 is such that
lim o = A, (A17)

Thanks to (A11)-(A13) and (A17), for any R > 1,

lim it 2C / dv, = A / Halp = Annt (A18)
1 € e VedVy. = Ay r =2
a—>0’u Bo(R) 9e B 2n(n + 2)
Now we write that
-2 1-— 1/2 n_
O.(x) = (14 6)n(|z)p= 2 Vq <M> + a2 w. (A19)

where w. € C} (By(2)), the space of C''-functions with compact support in By(2). Thanks to

(A11), (A12) and (A13),
An

. _ 2_
e = Gl

An
2(n—2)

(A20)

in CL, (B\{O}) N LP (B) for all p < n/(n — 2). Independently, the fact that (y., 6., 7.) realizes
the infimum of J. gives that

J
J

VU.,Vw,)dv, =0

osl

0

VUi, Vw,)dv, =0 (A21)

osl

) (
0(2) (
o (Vo,, Vw,)dv, =0

oo}

0
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where (.,.) is the scalar product with respect to g., and where

- 1—e)Y2x
U, = (e V(M)

o=y 252 (07 g (1220

ey (1= )"l
U= (et (=2

for i = 1,...,n. A first objective is to compute the L?-norm of the gradient of w.. We start
writing that

1—n

2 A, U )w.d
He /Bo(Q)( gsva)wa ,Ugs

Bo(2)

(A, U)wedu,, + /B . V. [2do,,

so that, thanks to (A21),

Y, |2d :Al‘%/ A, 5. )w.d
/Bo(2)| w| Vge = He 30(2)( gsUE)we Vg.

Using (A12), (A13), and (A15), it follows that

/ [V, [*dv,,
Bo(2)

l—c 12 [ o RN
=% fle 2/81)3 Yw.dv,, — Cefie * /Bzewgdvgs—l—o(l)

Thanks to (A16), (A17) and (A20) we then get that

2Aiwn_1
n(n —2)(n+ 2)

1-— _z «
/ Vw|*dv,, = E[L; 2 / v2 " tw.dv,, + +o(1) (A22)
Bo(2) B

K,

Since n = 4,5, we can write that
/vi*_lwedvgs =(1+ 95)2*_1/13U3*_1w5dvg5

H2 - D)1+ 0072 /B U2 ~2wld,,

+0 (ﬂ?_z /B Ug*_3|wa|3dvgs) +0 (ﬂfgﬂ /B |w6|2*dvgg>

Since U, is radially symmetrical,

1— N
SUZ 4 0 (r 2| UL ()

Ags UE = Kn 5
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in B. Therefore, using (A21),

21
/B UZ " wedu,,

K,
=1 /B(AggUe)wsd’Ugs +0 (Ts/B‘SL’||VU€||w€|dUg€>
K,

=1 /Bo(z)\B(AgEUg)wadvgs +0 <7’E/B |I||VUE||w€|dvgs)

Independently, thanks to Hélder’s inequality, and to the Euclidean Sobolev inequality, we can
write that

2* 1
2%

[l VUL wdo,. < ClISaela ([, (ol VUDF do, )

where C' > 0 is independent of . Since n = 4,5,

* n(n—2)
[V du, = 0 (35
Therefore,
/BUf*_lwadng =0 <,&3_1) +o <ﬂa§_1”vw5”2>
Coming back to (A22) we then get that

(o) [ |Vw.dy,
Bo(2) (A23)
—O0(1) + (2 — (1 +6.)¥ 21 —5)/BU€2*_2w€2dvgs

We claim now that
| Ve, = o) (A24)
Bo(2)

In order to prove (A24), we proceed by contradiction, assuming that
/ |Vw|*dv,. — +oo and / U2 2widv, — +oo
Bo(2) B

as € — 0, and we consider the following eigenvalue problem:

Ags(piﬁ = MZ’,EUE*_2S01'75 11'1 BO(Q)
Pie = 0 on 8B0(2)

where
UZ 20, .; cdvy, = 0y
/Bo(2) e $iePyelly, J

and 1. < ... < . <.... Since g. — £ in C) (IR") as e — 0, £ the Euclidean metric, the

loc

analysis of subsection 12.1.6 can be applied to the present situation. We then get that for any
1>1,

Pie — pi , and
U2*_2 e — i dv,. — 0
/B E (pie — mbic) dvg,
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when ¢ — 0, where

A5l Iaa|x| o
Hé ,lvbha <m> _,lvbl(x)

and
AY; = pVo(lz)* 24 in R™
| Vollal)* “2u2dz < +oo
Bn

Thanks to Bianchi-Egnell [4] and Rey [34],

1 _ _2*—1 >2*—1
,Ul—K y M2 = .= Hny2 = K, y Mn+3 K,

and ¥ (z) = Vp(|z|) while

We let "
We = Z Qe Pie + Re
i=1

where

o Ipo(2) (Vwe, Vi o) dvg,

o IBo(2) [Vpic[*du,,
Hence,

1 1
Qi =— [ (Ve Vg =mi ) dv, +— [ (Vue, V(i) do,
,Ui,a BO(2) 2,€ 30(2)

and it is easily checked that this implies that
af. = o (| Vue[3) + 0 (X2)

where

X, = ) (vwsa v(nwiﬁ)) dvgs

Bo(2
Thanks to (A21) we then get that for any i = 1,...,n+ 2,

0. = o (||Vuw.|3) +o(1)

Independently,

n+2

Yw.|?dv, > Q2 i, /
/Bo(2)| 6| gs—;,u,a ie T Hn+3e Bo

0

) UZ 2R2dv,,
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and
n+2

U ~2wkdv o? —I—/ U 2 R%dv
BO( ge Z € 0(2 ge

Therefore, since fip13. — 3 as € — 0, and fi,43 > z ;1,
IBo(2) |V, [*du,, 2 -1

li ‘f >
lm fB() UE2* 2wgdvgs Kn

Noting that
11 fB() |Vw5|2dvgs _ 1
€0 IB ‘vw5| dvgs

it follows that )
fBo(2) |\Vw|*dvg, 2% —1

>
Js U wZdvy. K,
and we get a contradiction by coming back to (A23). This proves (A24). Now we compute

lim inf
e—0

A= / V. [2dx
Bo(2)
We let 7. be the function given by 7.(z) = n (r;ldg(ata, exp,, (T’El’)). Then, on the one hand,

V. |2dv :/ n20. A, v.dv +/ Vi |2v3dv
/]30(2)‘ | ge 30(2)775 e g, Ve@WUg, Bo(2)‘ e e WUg,

1 - 8 ~2 2* ~ ~
= v2 dv, — C / 20.dv +/ Vi |*v2dv
K, oo )775 e AUg, e Bo(2) 7 VeQUg, Bo(2) Vi | e Vg,

Thanks to (A5), but also (A12), (A13), and (A18), it follows that

1—c¢ A2u} -1
VNE 2d — _ n-"n ~n—2 An—2
~/<Bo(2)| v | Ugs Kn 2n(n_'_2>lu“a +O(:ue )

On the other hand, thanks to (A21),

[ g = (U0 [ VU [ (T,

2)

+2(1+6.)i s /Bo(z) (VU:, Vw.) dvg,

= (14007 [ VU, 42 [ G
( ) B0(2)| | ge T M 0(2)| | e

Noting that U. is radially symmetrical, thanks to the Cartan expansion of a metric in geodesic
normal coordinates, it is easily checked that

2 _ 27 (n—=2)(n+2) 242 An—2
/;O<2> |VU€| d’UgE - /;O<2> |VU€| dl’ 6(7’L— )(1 g)n/gsg(ye)re:ua +O(:ue )
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when n = 5, and that

80&)3 ~ ~ ~
VU.|12d :/ VUPde — — 8 (4 )r202| In fi. 2
Joi VU0, = [ VU = oo Sy ()22 e+ o (7)

when n = 4. Combining the above quations, it follows that

(0 [ [VUPde+ e [ |V,
Bo(2) Bo(2)

(n—2)(n+2)(1+6.)>
6(n —4)(1 —¢e)n/?

= - e +
K, 2n(n+2)

Sy(ye)r?ii2 + o (ir?)
when n = 5, and that

1+ 2/ VU, e + AQ—Q/ V. [2dv
(07 [ VP [ (G,

1—e Alws , 8uws(1+6.)? 2

- a S (y)r2i2| In fi. -2
K, 48 e Swa(1 — £)2 o(ye)reiz| Infi |+-0(p€)

when n = 4. Coming back to the computation of A., we can write that

/ Vo, |2dx = (1+9€)2/ IVU.[2dx
Bo(2) Bo(2)

+2(1+9E)ﬂ§‘1/ (VUa,Vwa)dx+ﬂ?_2(1+0(1))/ V. [2du,,
Bo(2) Bo(2)

Thanks to (A21), and to the Cartan expansion of a metric in geodesic normal coordinates,

/ (VU.,Vw.)dz = O (ﬁ/ \:c|2|VU€HVw€|dx>
Bo(2) Bo(2)
= 0(rzaE )
R ng )
— o (@) o (V)
Therefore, thanks to (A24), and the above equations,

l—e  A2w,q ., (n=2)(n+2)(1+6.)*

A = _ V2l ~n—2 A25
Kn 271(71 + 2)'“5 6(n _ 4)(1 _ 5)n/2 Sg(y )T€M€ +o (lu’s ) ( )
when n = 5, and
1—¢ Alws 8uws(1 + 6.)?
A = _ A4W3 9 € 22 1n i ~2 A%6
e 18 et s a2 Sy(ye)r2ii2| n fie| + o (j2) (A26)

when n = 4. Now we compute
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Thanks to (A24), we can write that

/ Pde = (1+60)% [ U¥de+2(1+0.) pd!
Bo(2) Bo(2)

2%(2* — 1)
L

Thanks to (A23)-(A24) we can also write that
~2* An—2
- dvg, =14 o (1l
/30(2) ! (,U )
= (4007 [ UZdu, 200G [ 0
( + ) Bo(2) € Ugs + ( + ) o B £ w Ugs

0(2)
2*(2*_ 1) 2% —2 ~An—2 2*—2 2 ~n—2
2 16, " / U dx+ o (7
5 (L +0:)" i LA A o (jr?)

U "lw.dx
Bo(2)

(102 [ U Pulde o ()

+

The Cartan expansion of a metric in geodesic normal coordinates gives that
nk,

| U2 du,, = U dw — =" 8,(ye) (1 — )= 3022 + 0 (1272

B0(2 B0(2) 6

On the other hand, it is easily checked that

U wdvy, = [ UF wdo o ()
/Bo(2> o T fp e TR

Combining the above equations, we get that

f 0 e = L (1 0 S ) (L= ) e o (42 2)
and it follows that
Bo= 1+ P2 g (0 ()i o (72) (427)
The sharp Euclidean Sobolev inequality applied to the 9.’s reads as
B. < K, A. (A28)

Combining (A25)-(A28), we get that

i A2K4W3I&? S 8K4w3(1 + 95)2
48 3(4)4(1 — 8)2

e Sy(ye)r2ii?| In fic| + o (22) (A29)

when n = 4, and that

— DK, (1+6.)% [(140.)>2 2 X
ey P 6()1 _(5); ) <( J; _)5 - thl) Sy(ye)r2 il
K (A30)
'™ nWn—1 .p_2 ~n—2
= T+ 2) He +0(ue )

when n = 5. Since Sy(y.) < 0, (A29) and (A30) are impossible. This is the contradiction we
were looking for. Theorem 4.3 is proved.
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