Existence, stability and instability
for Einstein-scalar field
Lichnerowicz equations

by

Emmanuel Hebey

Joint works with
Olivier Druet
and with
Frank Pacard and Dan Pollack

Two hours lectures
IAS, October 2008
Augmented June 2009
Contents:

Introduction and main results
Further directions and comments - 1
Further directions and comments - 2
Proof of Theorem 1
Proof of the stability part in Theorem 2
Proof of the instability part in Theorem 2
The case $a \geq 0$. Unpublished result.
Given Ψ scalar field, and $V(\Psi)$ a potential, Einstein-scalar field equations are written as:

$$G_{ij} = \nabla_i \Psi \nabla_j \Psi - \frac{1}{2} (\nabla^\alpha \Psi \nabla_\alpha \Psi) \gamma_{ij} - V(\Psi) \gamma_{ij},$$

where γ is the spacetime metric, and $G = R_{\gamma\gamma} - \frac{1}{2} S_{\gamma\gamma}$ is the Einstein curvature tensor. In the massive Klein-Gordon field theory,

$$V(\Psi) = \frac{1}{2} m^2 \Psi^2.$$
The constraint equations, using the conformal method, are

\[
\frac{4(n-1)}{n-2} \Delta_g u + h(g, \psi) u = f(\psi, \tau) u^{2* - 1} + \frac{a(\sigma, W, \pi)}{u^{2*+1}}, \quad (1)
\]

\[
\text{div}_g (\mathcal{D}W) = \frac{n-1}{n} u^{2*} \nabla \tau - \pi \nabla \psi, \quad (2)
\]

where \(\Delta_g = -\text{div}_g \nabla \), \(2^* = 2n/(n-2) \),

\[
h = S_g - |\nabla \psi|^2, \quad a = |\sigma + \mathcal{D}W|^2 + \pi^2, \quad f = 4V(\psi) - \frac{n-1}{n} \tau^2
\]

and \(S_g \) is the scalar curvature of \(g \). Here, \(\psi, \pi \) and \(\tau \) are functions connected to the physics setting (\(\tau \) mean curvature of spacelike hypersurface), \(\sigma \) \(TT \)-tensor, \(W \) vector field, and \(\mathcal{D} \) the conformal Killing operator given by

\[
(\mathcal{D}W)_{ij} = (\nabla_i W)_j + (\nabla_j W)_i - \frac{2}{n} (\text{div}_g W) g_{ij}.
\]

The system (1) – (2) is decoupled in the constant mean curvature setting, namely when \(\tau = C^{te} \).
The free data are \((g, \sigma, \tau, \psi, \pi)\). The determined data are \(u\) and \(W\). They satisfy

\[
\frac{4(n-1)}{n-2} \Delta_g u + h(g, \psi) u = f(\psi, \tau) u^{2* - 1} + \frac{a(\sigma, W, \pi)}{u^{2* + 1}}, \quad (1)
\]

\[
\text{div}_g (D W) = \frac{n-1}{n} u^{2*} \nabla \tau - \pi \nabla \psi. \quad (2)
\]

\((M, g)\) compact, \(\partial M = \emptyset\), \(n \geq 3\). Let \(h, a,\) and \(f\) be arbitrary smooth functions in \(M\). Assume \(a > 0\). Consider

\[\Delta_g u + hu = fu^{2^* - 1} + \frac{a}{u^{2^* + 1}},\]

\((EL)\)

where \(\Delta_g = -\text{div}_g \nabla\), and \(2^* = \frac{2n}{n-2}\).

Example: (Sub and supersolution method, Choquet-Bruhat, Isenberg, Pollack, 2006). Assume \(\Delta_g + h\) is coercive and \(f \leq 0\). Let \(v > 0\) and \(u_0 > 0\) be such that

\[\Delta_g u_0 + hu_0 = v.\]

For \(t > 0\), let \(u_t = tu_0\). We have:

(i) \(u_t\) is a subsolution of \((EL)\) when \(t \ll 1\), and

(ii) \(u_t\) is a supersolution of \((EL)\) when \(t \gg 1\).

Since \(u_t \leq u_{t'}\) when \(t \leq t'\), the sub and supersolution method provides a solution “\(u \in [u_t, u_{t'}]\)” for \((EL)\).
Question: What can we say when $\Delta g + h$ is coercive and either f changes sign or f is everywhere positive, i.e. when $\max_M f > 0$?

Assume $\Delta g + h$ is coercive. Define

$$\|u\|_h^2 = \int_M (|\nabla u|^2 + hu^2) \, dv_g,$$

$u \in H^1$. Let $S(h)$ to be the smallest constant such that

$$\left(\int_M |u|^{2^*} \, dv_g \right)^{2/2^*} \leq S(h)^{2/2^*} \int_M (|\nabla u|^2 + hu^2) \, dv_g$$

for all $u \in H^1$.
\((M, g)\) be a smooth compact Riemannian manifold, \(n \geq 3\). Let \(h, a,\) and \(f\) be smooth functions in \(M\). Assume that \(\Delta_g + h\) is coercive, that \(a > 0\) in \(M\), and that \(\max_M f > 0\). There exists
\(C = C(n), C > 0\) depending only on \(n\), such that if
\[
\|\varphi\|_h^2 \int_M \frac{a}{\varphi^2} dv_g < \frac{C(n)}{(S(h) \max_M |f|)^{n-1}}
\]
and \(\int_M f \varphi^{2*} dv_g > 0\) for some smooth positive function \(\varphi > 0\) in
\(M\), then the Einstein-scalar field Lichnerowicz equation (EL) possesses a smooth positive solution.

Example: if \(\int_M f dv_g > 0\) then take \(\varphi \equiv 1\) and the condition reads as
\[
\int_M a dv_g < \frac{C(n, g, h)}{(\max_M |f|)^{n-1}} ,
\]
where \(C(n, g, h) > 0\) depends on \(n, g\) and \(h\).
A perturbation of (EL) is a sequence \((EL_\alpha)_\alpha\) of equations, \(\alpha \in \mathbb{N}\), which are written as

\[
\Delta_g u + h_\alpha u = f_\alpha u^{2^*-1} + \frac{a_\alpha}{u^{2^*+1}} + k_\alpha
\]

\((EL_\alpha)\)

for all \(\alpha\). Here we require that

\[
h_\alpha \to h, \ a_\alpha \to a, \ k_\alpha \to 0
\]

in \(C^0\) as \(\alpha \to +\infty\), and that \(f_\alpha \to f\) in \(C^{1,\eta}\) as \(\alpha \to +\infty\), where \(\eta > \frac{1}{2}\).

If (EL) satisfies the assumption of Theorem 1, any perturbation of (EL) also satisfies the assumptions of Theorem 1.

A sequence \((u_\alpha)_\alpha\) is a sequence of solutions of \((EL_\alpha)_\alpha\) if for any \(\alpha\), \(u_\alpha\) solves \((EL_\alpha)\).
Definition: (Elliptic stability) The Einstein-scalar field Lichnerowicz equation (EL) is said to be:

(i) stable if for any perturbation \((EL_\alpha)_\alpha\) of (EL), and any \(H^1\)-bounded sequence \((u_\alpha)_\alpha\) of smooth positive solutions of \((EL_\alpha)_\alpha\), there exists a smooth positive solution \(u\) of (EL) such that, up to a subsequence, \(u_\alpha \to u\) in \(C^{1,\theta}(M)\) for all \(\theta \in (0,1)\), and

(ii) bounded and stable if for any perturbation \((EL_\alpha)_\alpha\) of (EL), and any sequence \((u_\alpha)_\alpha\) of smooth positive solutions of \((EL_\alpha)_\alpha\), the sequence \((u_\alpha)_\alpha\) is bounded in \(H^1\) and there exists a smooth positive solution \(u\) of (EL) such that, up to a subsequence, \(u_\alpha \to u\) in \(C^{1,\theta}(M)\) for all \(\theta \in (0,1)\).
Remark 1: Assuming stronger convergences for the h_α's, f_α's, etc., then we get stronger convergences for the u_α's. E.g., if $h_\alpha \to h$, $f_\alpha \to f$, $a_\alpha \to a$ and $k_\alpha \to 0$ in $C^{p,\theta}$, $p \in \mathbb{N}$ and $\theta \in (0, 1)$, then $u_\alpha \to u$ in $C^{p+2,\theta'}$, $\theta' < \theta$.

Remark 2: Stability means that if you slightly perturb h, a, and f, and even if you add to the equation a small “background noise” represented by k, then, in doing so, you do not create solutions which stand far from a solution of the original equation.

Remark 3: Say (EL) is compact if any H^1-bounded sequence $(u_\alpha)_\alpha$ of solutions of (EL) does possess a subsequence which converges in C^2. Say (EL) is bounded and compact if any sequence $(u_\alpha)_\alpha$ of solutions of (EL) does possess a subsequence which converges in C^2. Stability implies compactness. Bounded stability implies bounded compactness.
Let $\mathcal{D} = C^\infty(M)^4$ and $\| \cdot \|_\mathcal{D}$ be given by

$$
\| D \|_\mathcal{D} = \sum_{i=1}^{3} \| f_i \|_{C^{0,1}} + \| f_4 \|_{C^{1,1}}
$$

for all $D = (f_1, f_2, f_3, f_4) \in \mathcal{D}$. For $D = (h, a, k, f)$ in \mathcal{D} consider

$$
\Delta_g u + hu = fu^{2^* - 1} + \frac{a}{u^{2^* + 1}} + k. \quad (EL')
$$

If $D = (h, a, 0, f)$, then $(EL') = (EL)$. Let $\Lambda > 0$, $D = (h, a, k, f)$ in \mathcal{D}, and define

$$
S_{D,\Lambda} = \left\{ u \text{ solution of } (EL') \text{ s.t. } \|u\|_{H^1} \leq \Lambda \right\},
$$

and $S_D = \left\{ u \text{ solution of } (EL') \right\}$.

When $D = (h, a, 0, f)$ we recover solutions of (EL).
For $X, Y \subset C^2$ define

\[
d_{C^2}(X; Y) = \sup_{u \in X} \inf_{v \in Y} \| v - u \|_{C^2}.
\]

By convention, $d_{C^2}(X; \emptyset) = +\infty$ if $X \neq \emptyset$, and $d_{C^2}(\emptyset; Y) = 0$ for all Y, including $Y = \emptyset$.

Let $D = (h, a, 0, f)$ be given.

Stability \iff (EL) is compact and

\[
\forall \varepsilon > 0, \ \forall \Lambda > 0, \ \exists \delta > 0 \text{ s.t. } \forall D' = (h', a', k', f') \in D, \langle D' - D \rangle_D < \delta \implies d_{C^2}(S_{D'}, \Lambda; S_D, \Lambda) < \varepsilon.
\]

Bounded stability \iff (EL) is bounded compact and

\[
\forall \varepsilon > 0, \ \exists \delta > 0 \text{ s.t. } \forall D' = (h', a', k', f') \in D, \langle D' - D \rangle_D < \delta \implies d_{C^2}(S_{D'}; S_D) < \varepsilon.
\]
Theorem 2: (Druet-H., Math. Z., 2008) Let \((M, g)\) be a smooth compact Riemannian manifold of dimension \(n \geq 3\), and \(h, a, f \in C^\infty(M)\) be smooth functions in \(M\) with \(a > 0\). Assume \(n = 3, 4, 5\). Then the Einstein-scalar field Lichnerowicz equation

\[
\Delta_g u + hu = fu^{2^*-1} + \frac{a}{u^{2^*}+1}
\]

is stable. The equation is even bounded and stable assuming in addition that \(f > 0\) in \(M\). On the contrary, \((EL)\) is not anymore stable a priori when \(n \geq 6\).
I. Further directions and comments - 1

Assume $a \geq 0$, $f > 0$, and

$$\frac{n^n}{(n - 1)^{n-1}} \left(\int_M a^\frac{n+2}{4n} f^\frac{3n-2}{4n} d\nu_g \right)^{\frac{4n}{n+2}} > \left(\int_M \left(h^+ \right)^\frac{n+2}{4} d\nu_g \right)^{\frac{4n}{n+2}}.$$

Then the Einstein-scalar field Lichnerowicz equation (EL) does not possess solutions.

In particular, for any h, and any $f > 0$, there exist a positive constante $C = C(n, g, h, f)$ such that if

$$\int_M a^\frac{n+2}{4n} d\nu_g \geq C,$$

then (EL) does not possess solutions.
Proof: Integrating \((EL)\),

\[
\int_M f u^{2^*-1} dv_g + \int_M \frac{a dv_g}{u^{2^*+1}} = \int_M hudv_g.
\]

By Hölder’s inequalities,

\[
\int_M hudv_g \leq \left(\int_M \left(h^+ \right)^{\frac{n+2}{4}} dv_g \right)^{\frac{4}{n+2}} \left(\int_M f u^{2^*-1} dv_g \right)^{\frac{n-2}{n+2}}, \quad \text{and}
\]

\[
\int_M a^{\frac{n+2}{4n}} f^{\frac{3n-2}{4n}} dv_g \leq \left(\int_M f u^{2^*-1} dv_g \right)^{\frac{3n-2}{4n}} \left(\int_M \frac{a dv_g}{u^{2^*+1}} \right)^{\frac{n+2}{4n}}.
\]
\[
X + \left(\int_M a \frac{n+2}{4n} f \frac{3n-2}{4n} d\nu_g \right)^\frac{4n}{n+2} X^{1-n} \leq \left(\int_M \frac{(h^+)^{\frac{n+2}{4}}}{f^{\frac{n-2}{4}}} d\nu_g \right)^\frac{4n}{n+2},
\]

where
\[
X = \left(\int_M a \frac{n+2}{4n} f \frac{3n-2}{4n} d\nu_g \right)^\frac{4n}{n+2}.
\]

This implies
\[
\frac{n^n}{(n-1)^{n-1}} \left(\int_M a \frac{n+2}{4n} f \frac{3n-2}{4n} d\nu_g \right)^\frac{4n}{n+2} \leq \left(\int_M \frac{(h^+)^{\frac{n+2}{4}}}{f^{\frac{n-2}{4}}} d\nu_g \right)^\frac{4n}{n+2}.
\]
II. Further directions and comments - 2

Fix h, a and f. Assume $\Delta g + h$ is coercive, and $a, f > 0$. Let $t > 0$ and consider

$$\Delta g u + hu = fu^{2^*-1} + \frac{ta}{u^{2^*+1}}.$$ \hspace{1cm} (EL_t)

According to Theorem 1 and the Lemma:

(i) (Theorem 1) for $t \ll 1$, (EL_t) possesses a solution,

(ii) (Lemma 1) for $t \gg 1$, (EL_t) does not possess any solution.

Assuming $n = 3, 4, 5,$

(iii) (Theorem 2) $(EL_t)_t$ is bounded and stable for $t \in [t_0, t_1],$

where $0 < t_0 < t_1.$
Let $\Lambda > 0$. Define
\[
\Omega_\Lambda = \left\{ u \in C^{2,\theta} \text{ s.t. } \| u \|_{C^{2,\theta}} < \Lambda \text{ and } \min_M u > \Lambda^{-1} \right\}.
\]

Fix $t_0 \ll 1$ such that (EL_{t_0}) possesses a solution. Fix $t_1 \gg 1$ such that (EL_{t_1}) does not possess any solution. Assume $n = 3, 4, 5$.

Define $F_t : \overline{\Omega}_\Lambda \to C^{2,\theta}$ by
\[
F_t u = u - L^{-1} \left(fu^{2^*-1} + \frac{ta}{u^{2^*}+1} \right),
\]
where $L = \Delta g + h$, and $t \in [t_0, t_1]$. By (iii), there exists $\Lambda_0 > 0$ such that $F_t^{-1}(0) \subset \Omega_{\Lambda_0}$ for all $t \in [t_0, t_1]$. Then, by (ii),
\[
\deg(F_{t_0}, \Omega_{\Lambda}, 0) = 0
\]
for all $\Lambda \gg 1$. In particular, assuming that the solutions of the equations are nondegenerate, the solution in Theorem 1 needs to come with another solution.
III. Proof of Theorem 1

We aim in proving:

Let \((M, g)\) be a smooth compact Riemannian manifold, \(n \geq 3\). Let \(h, a, \) and \(f\) be smooth functions in \(M\). Assume that \(\Delta g + h\) is coercive, that \(a > 0\) in \(M\), and that \(\max_M f > 0\). There exists \(C = C(n), C > 0\) depending only on \(n\), such that if

\[
\|\varphi\|_h^2 \int_M \frac{a}{\varphi^{2^*}} d\nu_g < \frac{C(n)}{(S(h) \max_M |f|)^{n-1}}
\]

and \(\int_M f \varphi^{2^*} d\nu_g > 0\) for some smooth positive function \(\varphi > 0\) in \(M\), then the Einstein-scalar field Lichnerowicz equation

\[
\Delta_g u + hu = fu^{2^*-1} + \frac{a}{u^{2^*+1}} \quad (EL)
\]

possesses a smooth positive solution.

Method: approximated equations, mountain pass analysis.
Fix $\epsilon > 0$. Define

$$I^{(1)}(u) = \frac{1}{2} \int_M (|\nabla u|^2 + hu^2) \, dv_g - \frac{1}{2^*} \int_M f(u^*)^{2*} \, dv_g,$$

and

$$I^{(2)}(\epsilon) = \frac{1}{2^*} \int_M \frac{adv_g}{(\epsilon + (u^+)^2)^{2^*/2}},$$

where $u \in H^1$. Let

$$I_\epsilon = I^{(1)} + I^{(2)}.$$

Let $\varphi > 0$ be as in Theorem 1. Assume $\|\varphi\|_h = 1$. The conditions in the theorem read as

$$\int_M \frac{a}{\varphi^{2^*}} \, dv_g < \frac{C(n)}{(S(h) \max_M |f|)^{n-1}}$$

$$\tag{1}$$

and $\int_M f \varphi^{2^*} \, dv_g > 0.$
Let $\Phi, \Psi : \mathbb{R}^+ \to \mathbb{R}$ be the functions given by
\[
\Phi(t) = \frac{1}{2} t^2 - \frac{\max_{\mathcal{M}} |f|}{2^*} S(h)t^{2^*}, \quad \text{and}
\Psi(t) = \frac{1}{2} t^2 + \frac{\max_{\mathcal{M}} |f|}{2^*} S(h)t^{2^*}.
\]

These functions satisfy
\[
\Phi(\|u\|_h) \leq l^{(1)}(u) \leq \Psi(\|u\|_h) \quad (2)
\]
for all $u \in H^1$. Let $t_1 > 0$ be such that Φ is increasing up to t_1 and decreasing after:
\[
t_1 = \left(S(h) \max_{\mathcal{M}} |f| \right)^{-(n-2)/4}.
\]

Let $t_0 > 0$ be given by
\[
t_0 = \sqrt{\frac{1}{2(n-1)} t_1}.
\]
Then
\[\psi(t_0) \leq \frac{1}{2} \Phi(t_1) \quad (3) \]
and for \(C \ll 1 \) the condition in the theorem translates into
\[\frac{1}{2^*} \int_M \frac{a}{(t_0 \varphi)^{2^*}} dV_g < \frac{1}{2} \Phi(t_1). \quad (4) \]

Let \(\rho = \Phi(t_1) \). Then, by (3) and (4),
\[I_{\varepsilon}(t_0 \varphi) < \rho \]
and by
\[\Phi(\|u\|_h) \leq I^{(1)}(u) \leq \psi(\|u\|_h), \quad (2) \]
we can write that
\[I_{\varepsilon}(u) \geq \rho \]
for all \(u \) s.t. \(\|u\|_h = t_1 \).
We got that there exists $\rho > 0$ such that

$$I_\epsilon(t_0 \varphi) < \rho$$

and

$$I_\epsilon(u) \geq \rho$$

for all u s.t. $\|u\|_h = t_1$. Also $t_1 > t_0$. Since $\int_M f \varphi^{2*} dv_g > 0$,

$$I_\epsilon(t \varphi) \to -\infty$$

as $t \to +\infty$.

\Rightarrow We can apply the mountain pass lemma.
Let $t_2 \gg 1$. Define
\[c_\varepsilon = \inf_{\gamma \in \Gamma} \max_{u \in \gamma} I_\varepsilon(u) \]
where Γ is the set of continuous paths joining $t_0 \varphi$ to $t_2 \varphi$. The MPL provides a Palais-Smale sequence $(u_\varepsilon^k)_k$ such that
\[I_\varepsilon(u_\varepsilon^k) \to c_\varepsilon \quad \text{and} \quad I_\varepsilon'(u_\varepsilon^k) \to 0 \]
as $k \to +\infty$. The sequence $(u_\varepsilon^k)_k$ is bounded in H^1. Up to a subsequence, $u_\varepsilon^k \rightharpoonup u_\varepsilon$ in H^1. Then u_ε satisfies
\[\Delta_g u_\varepsilon + h u_\varepsilon = f u_\varepsilon^{2^* - 1} + \frac{a u_\varepsilon}{(\varepsilon + u_\varepsilon^2)^{2^*/2} + 1} \]
In particular, u_ε is positive and smooth.
We can prove that the c_ε’s are bounded independently of ε. In particular the family $(u_\varepsilon)_\varepsilon$ is bounded in H^1. Now we can pass to the limit as $\varepsilon \to 0$ because u_ε will never approach zero. Take $x_\varepsilon \in M$ such that $u_\varepsilon(x_\varepsilon) = \min_M u_\varepsilon$. Then $\Delta_g u_\varepsilon(x_\varepsilon) \leq 0$ and

$$|h(x_\varepsilon)| + |f(x_\varepsilon)| u_\varepsilon(x_\varepsilon)^{2^* - 2} \geq \frac{a(x_\varepsilon)}{(\varepsilon + u_\varepsilon(x_\varepsilon)^2)^{2^*} + 1}.$$

This implies that there exists $\delta_0 > 0$ such that

$$\min_M u_\varepsilon \geq \delta_0$$

for all ε. If $u_\varepsilon \rightharpoonup u$ in H^1, then $u \geq \delta_0$ and u solves (EL).

\diamond
IV. Proof of the stability part in Theorem 2

We aim in proving:

Let \((M,g)\) be a smooth compact Riemannian manifold of dimension \(n \geq 3\), and \(h, a, f \in C^\infty(M)\) be smooth functions in \(M\) with \(a > 0\). Assume \(n = 3, 4, 5\). Then the Einstein-scalar field Lichnerowicz equation

\[
\Delta_g u + hu = fu^{2^*-1} + \frac{a}{u^{2^*+1}} \quad (EL)
\]

is stable, and even bounded and stable if \(f > 0\) in \(M\).

Method: blow-up analysis, sharp pointwise estimates.
Let \((EL_\alpha)_\alpha\) be a perturbation of \((EL)\). Let also \((u_\alpha)_\alpha\) be a sequence of solutions of \((EL_\alpha)\). Consider

(H1A) \(f > 0\) in \(M\),

(H1B) \((u_\alpha)_\alpha\) is bounded in \(H^1\),

(H2) \(\exists \varepsilon_0 > 0\) s.t. \(u_\alpha \geq \varepsilon_0\) in \(M\) for all \(\alpha\).

We claim that:

Stability Theorem: (Druet-H., Math. Z., 2008) Let \(n \leq 5\). Let \((EL_\alpha)_\alpha\) be a perturbation of \((EL)\) and \((u_\alpha)_\alpha\) a sequence of solutions of \((EL_\alpha)_\alpha\). Assume (H1A) or (H1B), and we also assume (H2). Then the sequence \((u_\alpha)_\alpha\) is uniformly bounded in \(C^{1,\theta}\), \(\theta \in (0, 1)\).

By (H2),

\[|\Delta_g u_\alpha| \leq C u_\alpha^{2* - 1} , \]

where \(C > 0\) does not depend on \(\alpha\).
Proof of stability theorem: By contradiction. We assume that \(\|u_\alpha\|_\infty \to +\infty \) as \(\alpha \to +\infty \). We also assume (H1A) or (H1B), and (H2). Let \((x_\alpha)_\alpha\) and \((\rho_\alpha)_\alpha\) be such that

(i) \(x_\alpha\) is a critical point of \(u_\alpha\) for all \(\alpha\),

(ii) \(\rho_\alpha^{\frac{n-2}{2}} \sup_{B_{x_\alpha}(\rho_\alpha)} u_\alpha \to +\infty\) as \(\alpha \to +\infty\), and

(iii) \(d_g(x_\alpha, x) \frac{n-2}{2} u_\alpha(x) \leq C\) for all \(x \in B_{x_\alpha}(\rho_\alpha)\) and all \(\alpha\).

Then :

Main Estimate: Assume (i) – (iii). Then we have that \(\rho_\alpha \to 0\), \(\frac{n-2}{2} u_\alpha(x_\alpha) \to +\infty\), and

\[
 u_\alpha(x_\alpha) \rho_\alpha^{n-2} u_\alpha \left(\exp_{x_\alpha}(\rho_\alpha x) \right) \to \frac{\lambda}{|x|^{n-2}} + H(x)
\]

in \(C^2_{loc}(B_0(1)\setminus\{0\})\) as \(\alpha \to +\infty\), where \(\lambda > 0\) and \(H\) is a harmonic function in \(B_0(1)\) which satisfies that \(H(0) = 0\).
There exist $C > 0$, a sequence $(N_\alpha)_{\alpha}$ of integers, and for any α, critical points $x_{1,\alpha}, \ldots, x_{N_\alpha,\alpha}$ of u_α such that

$$\left(\min_{i=1,\ldots,N_\alpha} d_g(x_{i,\alpha}, x) \right)^{\frac{n-2}{2}} u_\alpha(x) \leq C$$

for all $x \in M$ and all α. We have $N_\alpha \geq 2$. Define

$$d_\alpha = \min_{1 \leq i < j \leq N_\alpha} d_g(x_{i,\alpha}, x_{j,\alpha})$$

and let the $x_{i,\alpha}$'s be such that $d_\alpha = d_g(x_{1,\alpha}, x_{2,\alpha})$. We have $d_\alpha \to 0$ as $\alpha \to +\infty$. Moreover,

$$d_\alpha^{\frac{n-2}{2}} u_\alpha(x_{1,\alpha}) \to +\infty$$

as $\alpha \to +\infty$.
Define \tilde{u}_α by

$$\tilde{u}_\alpha(x) = d_\alpha^{\frac{n-2}{2}} u_\alpha \left(\exp_{x_1, \alpha}(d_\alpha x) \right),$$

where $x \in \mathbb{R}^n$. Let $\tilde{v}_\alpha = \tilde{u}_\alpha(0)\tilde{u}_\alpha$. Then

$$|\Delta \tilde{g}_\alpha \tilde{v}_\alpha| \leq \frac{C}{\tilde{u}_\alpha(0)^{2*-2}} \tilde{v}_\alpha^{2*-1},$$

(3)

where $\tilde{g}_\alpha \to \delta$ as $\alpha \to +\infty$. Because of

$$d_\alpha^{\frac{n-2}{2}} u_\alpha(x_1, \alpha) \to +\infty,$$

(2)

$\tilde{u}_\alpha(0) \to +\infty$ as $\alpha \to +\infty$. Independently, by elliptic theory, for any $R > 0$,

$$\tilde{v}_\alpha \to G \text{ in } C^1_{loc} (B_0(R) \setminus \{\tilde{x}_i\}_{i=1,...,p})$$

as $\alpha \to +\infty$, where, because of (3), G is nonnegative and harmonic in $B_0(R) \setminus \{\tilde{x}_i\}_{i=1,...,p}$.
Then,

\[G(x) = \sum_{i=1}^{p} \frac{\lambda_i}{|x - \tilde{x}_i|^{n-2}} + H(x), \]

where \(\lambda_i > 0 \) and \(H \) is harmonic without singularities. In particular, in a neighbourhood of 0,

\[G(x) = \frac{\lambda_1}{|x|^{n-2}} + \tilde{H}(x). \]

By

\[\left(\min_{i=1,\ldots,N_\alpha} d_g(x_i,\alpha, x) \right)^{\frac{n-2}{2}} u_\alpha(x) \leq C \] \hspace{1cm} (1)

\[d_\alpha^{\frac{n-2}{2}} u_\alpha(x_{1,\alpha}) \to +\infty \] \hspace{1cm} (2)

we can apply the main estimate with \(x_\alpha = x_{1,\alpha} \) and \(\rho_\alpha = \frac{d_\alpha}{10} \). In particular, \(\tilde{H}(0) = 0. \)
However,

\[G(x) = \frac{\lambda_1}{|x|^{n-2}} + \frac{\lambda_2}{|x - \tilde{x}_2|^{n-2}} + \hat{H}(x) \]

\[\geq 0 \]

and

\[\tilde{H}(x) = \frac{\lambda_2}{|x - \tilde{x}_2|^{n-2}} + \hat{H}(x) . \]

By the maximum principle,

\[\hat{H}(0) \geq \min_{\partial B_0(R)} \hat{H} \]

and we get that

\[\tilde{H}(0) \geq \frac{\lambda_2}{|\tilde{x}_2|^{n-2}} - \frac{\lambda_1}{R^{n-2}} - \frac{\lambda_2}{(R - |\tilde{x}_2|)^{n-2}} . \]

By construction, \(|\tilde{x}_2| = 1\). Choosing \(R \gg 1\) sufficiently large, \(\tilde{H}(0) > 0\). A contradiction.
It remains to prove the stability part in theorem 2. We introduced

(H1A) \(f > 0 \) in \(M \),

(H1B) \((u_\alpha)_\alpha \) is bounded in \(H^1 \),

(H2) \(\exists \varepsilon_0 > 0 \) s.t. \(u_\alpha \geq \varepsilon_0 \) in \(M \) for all \(\alpha \),

and we proved that

\[(H1A) \text{ or } (H1B), \text{ and } (H2) \Rightarrow C^{1,\theta} - \text{convergences}\]

for the \(u_\alpha \)'s solutions of perturbations of \((EL) \). Let \((EL_\alpha)_\alpha \) be any perturbation of \((EL) \), and \((u_\alpha)_\alpha \) be any sequence of solution of \((EL_\alpha)_\alpha \). It suffices to prove (H2). Let \(x_\alpha \) be such that

\[u_\alpha(x_\alpha) = \min u_\alpha. \]

Then \(\Delta_g u_\alpha(x_\alpha) \leq 0 \) and we get that

\[h_\alpha(x_\alpha) \geq \frac{1}{u_\alpha(x_\alpha)} \left(\frac{a_\alpha(x_\alpha)}{u_\alpha(x_\alpha)^{2x+1}} + k_\alpha(x_\alpha) \right) + f_\alpha(x_\alpha)u_\alpha(x_\alpha)^{2x-2}. \]

In particular, \(u_\alpha \geq \varepsilon_0 > 0 \) and (H2) is satisfied. We can apply the stability theorem. This proves the stability part of Theorem 2.
V. Proof of the instability part in Theorem 2

We aim in proving:

When \(n \geq 6 \) the Einstein-scalar field Lichnerowicz equation

\[
\Delta_g u + hu = fu^{2*-1} + \frac{a}{u^{2*+1}}
\] \hspace{1cm} (EL)

is not a priori stable.

Method: explicit constructions of examples.
A first construction.

Lemma 2: (Druet-H., Math. Z., 2008) Let \((S^n, g_0)\) be the unit sphere, \(n \geq 7\). Let \(x_0 \in S^n\). Let \(a\) and \(u_0\) be smooth positive functions such that

\[
\Delta g_0 u_0 + \frac{n(n-2)}{4} u_0 = \frac{n(n-2)}{4} u_0^{2^*-1} + \frac{a}{u_0^{2^*+1}}.
\]

There exist sequences \((h_\alpha)_{\alpha}\) and \((\Phi_\alpha)_{\alpha}\) such that \(h_\alpha \to \frac{n(n-2)}{4}\) in \(C^0(S^n)\), \(\max_M \Phi_\alpha \to +\infty\) and \(\Phi_\alpha \to 0\) in \(C^2_{loc}(S^n \setminus \{x_0\})\) as \(\alpha \to +\infty\). In addition

\[
\Delta g_0 u_\alpha + h_\alpha u_\alpha = \frac{n(n-2)}{4} u_\alpha^{2^*-1} + \frac{a}{u_\alpha^{2^*+1}}
\]

for all \(\alpha\), where \(u_\alpha = u_0 + \Phi_\alpha\).
Proof of Lemma 2: Let φ_α be given by

$$\varphi_\alpha(x) = \left(\frac{\sqrt{\beta^2_\alpha - 1}}{\beta_\alpha - \cos d_{g_0}(x_0, x)} \right)^{\frac{n-2}{2}},$$

where $\beta_\alpha > 1$ for all α and $\beta_\alpha \to 1$ as $\alpha \to +\infty$. The φ_α's satisfy

$$\Delta_{g_0} \varphi_\alpha + \frac{n(n-2)}{4} \varphi_\alpha = \frac{n(n-2)}{4} \varphi_\alpha^{2^*-1}.$$

Let

$$u_\alpha = u_0 + \varphi_\alpha + \psi_\alpha,$$

where ψ_α is such that

$$\Delta_{g_0} u_0 + \Delta_{g_0} \varphi_\alpha + \Delta_{g_0} \psi_\alpha$$

$$= \frac{n(n-2)}{4} (u_0 + \varphi_\alpha)^{2^*-1} - \left(\frac{n(n-2)}{4} + \varepsilon_\alpha \right) (u_0 + \varphi_\alpha)$$

$$+ \frac{a}{(u_0 + \varphi_\alpha)^{2^*+1}}.$$

We have $\varepsilon_\alpha \to 0$ as $\alpha \to +\infty$.
For any sequence \((x_\alpha)_\alpha\) of points in \(S^n\),

\[
|\psi_\alpha(x_\alpha)| = o \left(\left(\frac{(\beta_\alpha - 1)^{\frac{(n-2)}{2(n-4)}}}{(\beta_\alpha - 1) + d_{g_0}(x_0, x_\alpha)^2} \right)^{\frac{n-4}{2}} \right) + o(1) . \quad (1)
\]

Thanks to (1),

\[
\frac{\psi_\alpha}{u_\alpha} \to 0 \quad \text{and} \quad u_\alpha^{2^*-3} \psi_\alpha \to 0 \quad (2)
\]

in \(C^0(S^n)\) as \(\alpha \to +\infty\). For instance, either \(\psi_\alpha(x_\alpha) \to 0\) and \(\psi_\alpha(x_\alpha)/u_\alpha(x_\alpha) \to 0\), or \(\psi_\alpha(x_\alpha) \not\to 0\). In that case, because of (1), \(d_{g_0}(x_0, x_\alpha) \to 0\). Then, \(\psi_\alpha(x_\alpha)/u_\alpha(x_\alpha) \to 0\) since

\[
\frac{\psi_\alpha(x_\alpha)}{\varphi_\alpha(x_\alpha)} \leq C^{te} \left((\beta_\alpha - 1) + d_{g_0}(x_0, x_\alpha)^2 \right) .
\]
Let h_α be such that
\[
\Delta g_0 u_\alpha + h_\alpha u_\alpha = \frac{n(n-2)}{4} u_\alpha^{2*-1} + \frac{a}{u_\alpha^{2*+1}}
\]
for all α. Write $\Delta g_0 u_\alpha = \Delta g_0 u_0 + \Delta g_0 \varphi_\alpha + \Delta g_0 \psi_\alpha$. By the equation satisfied by ψ_α,
\[
\left(h_\alpha - \frac{n(n-2)}{4}\right) u_\alpha = O \left(u_\alpha^{2*-2}\psi_\alpha\right) + O \left(\psi_\alpha\right) + \varepsilon_\alpha u_\alpha.
\]
Divide by u_α, and conclude thanks to
\[
\frac{\psi_\alpha}{u_\alpha} \to 0 \quad \text{and} \quad u_\alpha^{2*-3}\psi_\alpha \to 0 \quad (2)
\]
that $h_\alpha \to \frac{n(n-2)}{4}$ in C^0 as $\alpha \to +\infty$. This proves Lemma 2. ♦
Say that \((M, g)\) has a conformally flat pole at \(x_0\) if \(g\) is conformally flat around \(x_0\). Thanks to Lemma 2 we get:

Lemma 3: (Druet-H., Math. Z., 2008) Let \((M, g)\) be a smooth compact Riemannian manifold with a conformally flat pole, \(n \geq 7\). There exists \(\delta > 0\) such that the Einstein-scalar Lichnerowicz equation

\[
\Delta_g u + \frac{n-2}{4(n-1)} S_g u = u^{2^*-1} + \frac{a}{u^{2^*+1}}
\]

is not stable on \((M, g)\) and possesses smooth positive solutions for all smooth functions \(a > 0\) such that \(\|a\|_1 < \delta\).
VI. The case \(a \geq 0 \). Unpublished result.

When \(a > 0 \) in \(M \): let \(u > 0 \) be a solution of \((EL)\). Let \(x_0 \) be such that \(u(x_0) = \min_M u \). Then \(\Delta_g u(x_0) \leq 0 \) and

\[
|h(x_0)|u(x_0) + |f(x_0)|u(x_0)^{2^* - 1} \geq \frac{a(x_0)}{u(x_0)^{2^* + 1}}
\]

\(\Rightarrow \) there exists \(\varepsilon_0 = \varepsilon_0(h, f, a) \), \(\varepsilon_0 > 0 \), such that \(u \geq \varepsilon_0 \) in \(M \).

Question: Assume \(\Delta_g + h \) is coercive, \(a \geq 0 \) and \(\max_M f > 0 \). What can we say when \(\text{Zero}(a) \neq \emptyset \) ?

In physics

\[
a = |\sigma + DW|^2 + \pi^2,
\]

where \(\sigma \) and \(\pi \) are free data, and \(W \) is the determined data given by the second equation in the system.
Recall (EL) is compact if any H^1-bounded sequence $(u_\alpha)_\alpha$ of solutions of (EL) does possess a subsequence which converges in C^2. Recall (EL) is bounded and compact if any sequence $(u_\alpha)_\alpha$ of solutions of (EL) does possess a subsequence which converges in C^2.

Theorem 3: (Druet, Esposito, H., Pacard, Pollack, Collected works - Unpublished, 2009) Assume $\Delta_g + h$ is coercive, $a \geq 0$, $a \not\equiv 0$, and $\max_M f > 0$. *Theorem 1 remains true without any other assumptions than those of Theorem 1. Assuming that $n = 3, 4, 5$, the equation is compact and even bounded and compact when $f > 0$.*

Existence follows from a combination of Theorem 1 and the sub and supersolution method. Compactness follows from the stability theorem in the proof of Theorem 2 together with an argument by Pierpaolo Esposito.
Proof of the existence part in Theorem 3: Assume the “assumptions” of Theorem 1 are satisfied: there exists \(\varphi > 0 \) such that
\[
\|\varphi\|_h^{2^*} \int_M \frac{a}{\varphi^{2^*}} \, dv_g < \frac{C(n)}{(S(h) \max_M |f|)^{n-1}} \tag{1}
\]
and \(\int_M f \varphi^{2^*} \, dv_g > 0 \). Changing \(a \) into \(a + \varepsilon_0 \) for \(0 < \varepsilon_0 \ll 1 \), (1) is still satisfied, and since \(a + \varepsilon_0 > 0 \) we can apply Theorem 1. In particular,

(i) “\(a \to a + \varepsilon_0 \)”, \(0 < \varepsilon_0 \ll 1 \), and Theorem 1 \(\Rightarrow \exists u_1 \) a supersolution of \((EL)\).

Now let \(\delta > 0 \) and let \(u_0 \) solve
\[
\Delta_g u_0 + hu_0 = a - \delta f^-
\]

For \(\delta > 0 \) sufficiently small, \(u_0 \) is close to the solution with \(\delta = 0 \), and since this solution is positive by the maximum principle, we get that \(u_0 > 0 \) for \(0 < \delta \ll 1 \). Fix such a \(\delta > 0 \).
Given $\varepsilon > 0$, let $u_\varepsilon = \varepsilon u_0$. Then

$$\Delta_g u_\varepsilon + hu_\varepsilon = \varepsilon a - \delta \varepsilon f^- \leq fu_\varepsilon^{2* - 1} + \frac{a}{u_\varepsilon^{2* + 1}}$$

provided $0 < \varepsilon \ll 1$. In particular,

(ii) $u_\varepsilon = \varepsilon u_0$, $0 < \varepsilon \ll 1$, is a subsolution of (EL).

Noting that $u_\varepsilon \leq u_1$ for $\varepsilon > 0$ sufficiently small, we can apply the sub and supersolution method and get a solution u to (EL) such that $u_\varepsilon \leq u \leq u_1$.

The compactness part in Theorem 3 follows from the stability theorem in the proof of Theorem 2 together with the following result by Esposito which establishes the (H2) property of Druet and Hebey under general conditions.

We do not need in what follows the $C^{1,1}_\gamma$-convergence of the f_α’s. A C^0-convergence (and even less) is enough.
Lemma 4: (Esposito, Unpublished, 2009) Let \(n \leq 5 \). Let \((EL_\alpha)\) be a perturbation of \((EL)\) and \((u_\alpha)\) a sequence of solutions of \((EL_\alpha)\). Assume \(a_\alpha \geq 0 \) in \(M \) for all \(\alpha \), and \(a \neq 0 \). The \((H2)\) property holds true: \(\exists \varepsilon_0 > 0 \) such that \(u_\alpha \geq \varepsilon_0 \) in \(M \) for all \(\alpha \).

Proof of the lemma: Let \(K > 0 \) be such that \(K + h_\alpha \geq 1 \) in \(M \) for all \(\alpha \). Define \(\tilde{h}_\alpha = K + h_\alpha \) and \(\tilde{h} = K + h \). Let \(\delta > 0 \) and \(\nu_\delta, \nu^\delta \), and \(r_\alpha \) be given by

\[
\Delta_g \nu_\delta + \tilde{h}_\alpha \nu_\delta = a_\alpha - \delta f^-_\alpha ,
\]

\[
\Delta_g \nu^\delta + \tilde{h} \nu^\delta = a - \delta f^- ,
\]

\[
\Delta_g r_\alpha + \tilde{h}_\alpha r_\alpha = k_\alpha .
\]

There holds that \(\nu_\alpha^\delta \to \nu^\delta \) in \(C^0(M) \) as \(\alpha \to +\infty \) and that \(\nu^\delta \to \nu^0 \) in \(C^0(M) \) as \(\delta \to 0 \). By the maximum principle, \(\nu^0 > 0 \) in \(M \). It follows that there exists \(\delta > 0 \) sufficiently small, and \(\varepsilon_0 > 0 \), such that \(\nu_\alpha^\delta \geq \varepsilon_0 \) in \(M \) for all \(\alpha \gg 1 \). Fix such a \(\delta > 0 \). Let \(t > 0 \).
and define

\[w_\alpha = tv_\alpha^\delta + r_\alpha. \]

We have that \(r_\alpha \to 0 \) in \(C^0(M) \) as \(\alpha \to +\infty \). There exists \(t_0 > 0 \) such that

\[
\Delta_g w_\alpha + \tilde{h}_\alpha w_\alpha = ta_\alpha - t\delta f^-_\alpha + k_\alpha
\]

\[
\leq -f^-_\alpha w^{2*-1}_\alpha + \frac{a_\alpha}{w^{2*+1}_\alpha} + k_\alpha
\]

for all \(0 < t < t_0 \) and all \(\alpha \gg 1 \). As a consequence, since \(a_\alpha \geq 0 \) in \(M \),

\[
\Delta_g (u_\alpha - w_\alpha) + \tilde{h}_\alpha (u_\alpha - w_\alpha)
\]

\[
\geq f^-_\alpha u^{2*-1}_\alpha + f^-_\alpha w^{2*-1}_\alpha + \frac{a_\alpha}{u^{2*+1}_\alpha} - \frac{a_\alpha}{w^{2*+1}_\alpha} \geq 0
\]

for all \(\alpha \gg 1 \), at any point such that \(u_\alpha - w_\alpha \leq 0 \). The maximum principle then gives that \(w_\alpha \leq u_\alpha \) in \(M \) for all \(\alpha \gg 1 \). Since \(w_\alpha \geq \varepsilon_0 \) in \(M \) for \(\alpha \gg 1 \), this ends the proof of the lemma.