SUPER CRITICAL ENERGY SCALE INVARIANT EQUATIONS IN CRITICAL SPACES

EMMANUEL HEBEY

ABSTRACT. We discuss an elementary direct proof of the nonexistence of nontrivial solutions of supercritical solutions in invariant scaling spaces.

Let \dot{H}^2 be the Sobolev space in \mathbb{R}^n of functions such that $\Delta u \in L^2$ with the corresponding norm $\|u\|_{H^2}^2 = \int_{\mathbb{R}^n} (\Delta u)^2 dx$. We consider the equation

$$\begin{cases} \Delta u = |u|^{\frac{4}{n-4}} u \text{ in } \mathbb{R}^n ,\\ u \in \dot{H}^2(\mathbb{R}^n) . \end{cases}$$
(0.1)

As is easily checked, the equation is supercritial with respect to the \dot{H}^1 -control given by the Laplacian. The feature with (0.1) is that both $\|\cdot\|_{H^2}$ and (0.1) are invariant under the action of the scaling $u_{\lambda}(x) = \lambda^{\alpha} u(\lambda x), \lambda > 0$. By the work of Farina [2], (0.1) does not possess any nontrivial solution since, by the Cwikel, Lieb and Rozenblum formula (see, for instance, Li and Yau [4]), the condition $u \in \dot{H}^2$ implies that u has finite Morse index (and we can apply the results in [2] for stable equations outside compact subsets of \mathbb{R}^n). In these short notes we propose a very direct path to prove this result using basic conformal geometry arguments and the underlying fourth order critical structure attached to (0.1). We assume that n = 5, 6 and prove that the following result holds true.

Theorem 0.1. Suppose n = 5, 6. Equation (0.1) does not possess nontrivial solutions.

The proof we propose is as follows. First we remark that if u solves (0.1), then u also solves the critical fourth order equation

$$\Delta^2 u = \frac{n}{n-4} |u|^{\frac{8}{n-4}} u - \frac{4n}{(n-4)^2} |u|^{\frac{2(6-n)}{n-4}} |\nabla u|^2 u \tag{0.2}$$

that we derive directly from (0.1) by letting Δ act on (0.1). Transposing (0.1) and (0.2) into S^n , using conformal arguments and basic regularity theory, we get that

$$u = \frac{a + f \circ \Phi_p^{-1}}{(1 + |x|^2)^{\frac{n-4}{2}}} ,$$

where Φ_P is the stereographic projection of pole P, and $f \in C^{1,\theta}(S^n)$ vanishes at P. The "key" point is to prove that a = 0. Then, plugging u into the standard Pohozaev identity over balls $B_0(R)$ of large radii, letting $R \to +\infty$ and since a = 0, we get that u = 0.

Date: October 8, 2010.

EMMANUEL HEBEY

Proof. The first claim is that u satisfies (0.2) in \mathbb{R}^n in the sense of distributions. Indeed, integrating by parts, for any $\varphi \in \dot{H}^2$,

$$\int_{\mathbb{R}^n} (\Delta u) (\Delta \varphi) dx = \int_{\mathbb{R}^n} |u|^{\frac{4}{n-4}} u (\Delta \varphi) dx = \frac{n}{n-4} \int_{\mathbb{R}^n} |u|^{\frac{4}{n-4}} (\nabla u \nabla \varphi) dx$$

and since $\dot{H}^2 \subset \dot{H}^{1,2n/(n-2)} \subset L^{2n/(n-4)}$, there holds that $|u|^{\frac{4}{n-4}} |\nabla u| \in L^{2n/(n+2)}$. Similarly,

$$\begin{split} \int_{\mathbb{R}^n} |u|^{\frac{4}{n-4}} (\nabla u \nabla \varphi) dx &= \int_{\mathbb{R}^n} |u|^{\frac{4}{n-4}} (\Delta u) \varphi dx - \frac{4}{n-4} \int_{\mathbb{R}^n} |u|^{\frac{2(6-n)}{n-4}} u |\nabla u|^2 \varphi dx \\ &= \int_{\mathbb{R}^n} |u|^{\frac{8}{n-4}} u \varphi dx - \frac{4}{n-4} \int_{\mathbb{R}^n} |u|^{\frac{2(6-n)}{n-4}} u |\nabla u|^2 \varphi dx \end{split}$$

and, here again, $|u|^{\frac{4}{n-4}}(\Delta u), |u|^{\frac{8}{n-4}}u, |u|^{\frac{2(6-n)}{n-4}}u|\nabla u|^2 \in L^{2n/(n+4)}$. As a remark, $\frac{n+4}{n-4} = \frac{2n}{n-4} - 1$ and $2^{\sharp} = \frac{2n}{n-4}$ is the critical Sobolev exponent for the embeddings $H^2 \subset L^p$. In particular, (0.2) is critical (while (0.1) was supercritical). Now we let $P \in S^n$ and Φ_P be the stereographic projection of pole P. Let also g_0 be the standard metric on S^n . Basic Riemannian geometry gives that

$$\left(\Phi_P^{-1}\right)^* g_0 = \left(\frac{2}{1+|x|^2}\right)^2 \delta$$
, (0.3)

where δ is the Euclidean metric. Let $\varphi, \psi : \mathbb{R}^n \to \mathbb{R}$ be given by

$$\varphi(x) = \left(\frac{2}{1+|x|^2}\right)^{\frac{n-4}{2}} \text{ and } \psi(x) = \left(\frac{2}{1+|x|^2}\right)^{\frac{n-2}{2}}.$$
 (0.4)

Then (0.3) rewrites as

$$\left(\Phi_{P}^{-1}\right)^{*}g_{0} = \varphi^{\frac{4}{n-4}}\delta = \psi^{\frac{4}{n-2}}\delta \tag{0.5}$$

and there also holds that $\psi = \varphi^{\frac{n-2}{n-4}}$. We define $\hat{u}: S^n \setminus \{P\} \to \mathbb{R}^n$ by

$$\hat{u} = \left(\frac{u}{\varphi}\right) \circ \Phi_P , \qquad (0.6)$$

where φ is as in (0.4). Let P_g be the Paneitz [5] operator associated with a metric g. The operator P_g is conformally invariant in the sense that for any $u_0 > 0$ smooth, and any $w \in C^4$,

$$P_{u_0^{\frac{4}{n-4}}g}w = u_0^{-\frac{n+4}{n-4}}P_g(u_0w).$$
(0.7)

Let P_{g_0} be the Paneitz operator on S^n corresponding to $g = g_0$. Then P_{g_0} is given by

$$P_{g_0}u = \Delta_{g_0}^2 u + \frac{n^2 - 2n - 4}{2} \Delta_{g_0}u + \frac{n(n-4)(n^2 - 4)}{16}u, \qquad (0.8)$$

where $\Delta_{g_0} = -\text{div}_{g_0} \nabla$ is the Lapace-Beltrami operator. We also have that $P_{\delta} = \Delta^2$. By (0.2), (0.3), (0.5) and (0.7) we get that \hat{u} as given in (0.6) satisfies that

$$P_{g_0}\hat{u} = \frac{n}{n-4} |\hat{u}|^{\frac{8}{n-4}} \hat{u} - F\hat{u}$$
(0.9)

in $S^n \setminus \{P\}$ in the sense of distributions, where

$$F = \frac{4n}{(n-4)^2} \left(|u|^{\frac{2(6-n)}{n-4}} |\nabla u|^2 \varphi^{-\frac{8}{n-4}} \right) \circ \Phi_P , \qquad (0.10)$$

and φ is as in (0.4). Since $\dot{H}^2 \subset \dot{H}^{1,2n/(n-2)} \subset L^{2n/(n-4)}$, there holds that

$$F \in L^{\frac{n}{4}}(S^n) . \tag{0.11}$$

Indeed, we can write by (0.5) that

$$\int_{S^{n}} |F|^{\frac{n}{4}} dv_{g_{0}} = \int_{\mathbb{R}^{n}} |F \circ \Phi_{P}^{-1}|^{\frac{n}{4}} \varphi^{\frac{2n}{n-4}} dx$$
$$= \int_{\mathbb{R}^{n}} |u|^{\frac{n(6-n)}{2(n-4)}} |\nabla u|^{\frac{n}{2}} dx$$
$$\leq \left(\int_{\mathbb{R}^{n}} |u|^{\frac{2n}{2n-4}} dx\right)^{\frac{6-n}{4}} \left(\int_{\mathbb{R}^{n}} |\nabla u|^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{4}}$$

and (0.11) follows. Let $(u_{\alpha})_{\alpha}$ be a sequence of smooth functions with compact support in \mathbb{R}^n which converge to u in \dot{H}^2 and almost everywhere. By conformal invariance,

$$\int_{\mathbb{R}^n} \left(\Delta^2 (u_\alpha - u_\beta) \right) (u_\alpha - u_\beta) dx = \int_{S^n} \left(P_{g_0} (\hat{u}_\alpha - \hat{u}_\beta) \right) (\hat{u}_\alpha - \hat{u}_\beta) dv_{g_0} ,$$

where the \hat{u}_{α} are given by the conformal rule (0.6), and since

$$\|u\|_{H^2} = \sqrt{\int_{S^n} (P_{g_0} u) u dv_{g_0}}$$

is a norm on $H^2(S^n)$, we get that $(\hat{u}_{\alpha})_{\alpha}$ is a Cauchy sequence in H^2 . Since $\hat{u}_{\alpha} \to \hat{u}$ almost everywhere, we get that $\hat{u} \in H^2(S^n)$. As in Hebey and Robert [3], let $(\eta_s)_{s>0}$ be a family of smooth functions on S^n such that $0 \le \eta_s \le 1$, $\eta_s = 0$ in $B_P(s)$, $\eta_s = 1$ in $S^n \setminus B_P(2s)$, and

$$|\nabla \eta_s| \le \frac{C}{s}$$
 and $|\Delta_{g_0} \eta_s| \le \frac{C}{s^2}$ (0.12)

for all s > 0, where C > 0 does not depend on s. Let also $\tilde{\eta}_s = \eta_s - 1$. Noting that by Hölder's inequalities,

$$\lim_{s \to 0} \int_{S^n} (\Delta_{g_0} \hat{u}) (\Delta_{g_0} (\tilde{\eta}_s v)) dv_{g_0} = 0 ,$$

$$\lim_{s \to 0} \int_{S^n} (\nabla_{g_0} \hat{u} \nabla_{g_0} (\tilde{\eta}_s v)) dv_{g_0} = 0 , \text{ and}$$
(0.13)
$$\lim_{s \to 0} \int_{S^n} \hat{u} (\tilde{\eta}_s v) dv_{g_0} = 0$$

for all $v \in H^2(S^n)$, and that

$$\lim_{s \to 0} \int_{S^n} |\hat{u}|^{\frac{8}{n-4}} \hat{u}(\tilde{\eta}_s v) dv_{g_0} = 0 \text{ and } \lim_{s \to 0} \int_{S^n} F \hat{u}(\tilde{\eta}_s v) dv_{g_0} = 0$$
(0.14)

for all $v \in H^2(S^n)$ since $F\hat{u} \in L^{\frac{2n}{n+4}}$ by (0.11), we get by (0.13) and (0.14) that $\hat{u} \in H^2$ satisfies (0.9) in the sense of distributions in the whole of S^n . Then, by the regularity results in Djadli, Hebey and Ledoux [1], Lemma 2.1, we get that $\hat{u} \in L^p(S^n)$ for all $p \geq 1$. Now we exploit the second order equation satisfied by u. Let L_g be the conformal Laplacian given by

$$L_g u = \Delta_g u + \frac{n-2}{4(n-1)} S_g u ,$$

where S_g is the scalar curvature of g. Then L_g satisfies the conformal invariance rule that for any $u_0 > 0$ smooth, and any $w \in C^2$,

$$L_{u_0^{\frac{4}{n-2}}g}w = u_0^{-\frac{n+2}{n-2}}L_g(u_0w).$$
(0.15)

Let $\tilde{u}: S^n \setminus \{P\} \to \mathbb{R}$ be given by

$$\tilde{u} = \left(\frac{u}{\psi}\right) \circ \Phi_P , \qquad (0.16)$$

where ψ is as in (0.4). There holds that

$$\hat{u} = \left(\varphi \circ \Phi_P\right)^{\frac{2}{n-4}} \tilde{u} \tag{0.17}$$

in $S^n \setminus \{P\}$, and if Q = -P, since

$$\Phi_P \circ \Phi_Q^{-1}(x) = \frac{x}{|x|^2} \,,$$

we get that

$$\left(\varphi \circ \Phi_P\right)^{\frac{2}{n-4}} \left(\Phi_Q^{-1}(x)\right) = \frac{2|x|^2}{1+|x|^2} \tag{0.18}$$

. 0

for all $x \in \mathbb{R}^n \setminus \{0\}$.

Lemma 0.1. There holds that $\tilde{u} \in H^{2,\frac{n}{2}-\varepsilon}(S^n)$ for all $0 < \varepsilon \ll 1$, and

$$\Delta_{g_0}\tilde{u} + \frac{n(n-2)}{4}\tilde{u} = (\varphi \circ \Phi_P)^{-\frac{2}{n-4}} |\hat{u}|^{\frac{4}{n-4}}\hat{u}$$
(0.19)

in S^n in the sense of distributions.

Proof of Lemma 0.1. By (0.17) and (0.18) we have that in the chart $(S^n \setminus \{Q\}, \Phi_Q)$, from the viewpoint of integrability,

$$\tilde{u} \simeq \frac{1}{|x|^2} \hat{u}$$

at P, and since $\hat{u} \in L^p$ for all $p \ge 1$ according to what we proved above, we get that $\tilde{u} \in L^{\frac{n}{2}-\varepsilon}(S^n)$ for all $0 < \varepsilon \ll 1$. Let $v \in C^{\infty}(S^n)$ and $(\eta_s)_{s>0}$ be as above satisfying (0.12). By (0.1), (0.5), and (0.15) there holds that

$$\begin{split} \int_{S^n} \tilde{u} \left(L_{g_0}(\eta_s v) \right) dv_{g_0} &= \int_{\mathbb{R}^n} \left(\tilde{u} \circ \Phi_P^{-1} \right) L_{(\Phi_P^{-1})^* g_0} \left((\eta_s v) \circ \Phi_P^{-1} \right) dv_{(\Phi_P^{-1})^* g_0} \\ &= \int_{\mathbb{R}^n} u \Delta \left(\psi \left((\eta_s v) \circ \Phi_P^{-1} \right) \right) dx \\ &= \int_{\mathbb{R}^n} \left(|u|^{\frac{4}{n-4}} u \right) \psi \left((\eta_s v) \circ \Phi_P^{-1} \right) dx \end{split}$$
(0.20)

and we get that

$$\int_{S^n} \tilde{u} \left(L_{g_0}(\eta_s v) \right) dv_{g_0} = \int_{S^n} \left(\varphi \circ \Phi_P \right)^{-\frac{2}{n-4}} |\hat{u}|^{\frac{4}{n-4}} \hat{u} \eta_s v dv_{g_0} \tag{0.21}$$

There holds that $\eta_s v \to v$ in $L^p(S^n)$ for all $p \ge 1$, while

$$\Delta_{g_0}(\eta_s v) \to \Delta_{g_0} v$$

in $L^{\frac{n}{2}-\varepsilon}$ for all $0 < \varepsilon \ll 1$. Since $\hat{u} \in L^p$ for all $p \ge 1$, there also holds by (0.18) and Hölder's inequalities that

$$\left(\varphi \circ \Phi_P\right)^{-\frac{2}{n-4}} |\hat{u}|^{\frac{4}{n-4}} \hat{u} \in L^{\frac{n}{2}-\varepsilon}$$

for all $0 < \varepsilon \ll 1$. The conjugate exponent for $\frac{n}{2}$ is $\frac{n}{n-2}$ and we have that $\frac{n}{n-2} < \frac{n}{2}$. Hence,

$$\lim_{s \to 0} \int_{S^n} \tilde{u} \left(L_{g_0}(\eta_s v) \right) dv_{g_0} = \int_{S^n} \tilde{u} (L_{g_0} v) dv_{g_0} , \text{ and}$$
$$\lim_{s \to 0} \int_{S^n} \left(\varphi \circ \Phi_P \right)^{-\frac{2}{n-4}} |\hat{u}|^{\frac{4}{n-4}} \hat{u} \eta_s v dv_{g_0} = \int_{S^n} \left(\varphi \circ \Phi_P \right)^{-\frac{2}{n-4}} |\hat{u}|^{\frac{4}{n-4}} \hat{u} v dv_{g_0} ,$$

and we get by letting $s \to 0$ in (0.21) that \tilde{u} satisfies (0.19) in S^n in the sense of distributions. Since, around P, in the chart $(S^n \setminus \{Q\}, \Phi_Q)$,

$$\tilde{u} = \frac{1+|x|^2}{2|x|^2}\hat{u}$$

and $\hat{u} \in H^2$, there clearly holds that $\tilde{u} \in H^{1,p}(S^n)$ for p > 1 sufficiently close to 1. By regularity theory for second order elliptic equations it follows that

$$\tilde{u} \in H^{2,\frac{n}{2}-\varepsilon}$$

for all $0 < \varepsilon \ll 1$. This proves the lemma.

Now we continue with the proof of Theorem 0.1. The same computations as in (0.20) give that

$$\int_{S^n} \tilde{u} L_{g_0}(\eta_s v) dv_{g_0} = \int_{S^n} (\psi \circ \Phi_P)^{\frac{8}{(n-2)(n-4)}} |\tilde{u}|^{\frac{4}{n-4}} \tilde{u} \eta_s v dv_{g_0}$$
(0.22)

for all $v \in C^{\infty}(S^n)$. By Lemma 0.1 there also holds that $\tilde{u} \in L^p$ for all $p \ge 1$. Hence we can let $s \to 0$ in (0.22) and we get that

$$\Delta_{g_0}\tilde{u} + \frac{n(n-2)}{4}\tilde{u} = (\psi \circ \Phi_P)^{\frac{8}{(n-2)(n-4)}} |\tilde{u}|^{\frac{4}{n-4}}\tilde{u}$$
(0.23)

in S^n in the sense of distributions. By regularity theory and (0.23), since $\psi \circ \Phi_P$ is bounded, we get that $\tilde{u} \in H^{2,p}$ for all $p \ge 1$, and it follows that

$$\tilde{u} \in C^{1,\theta}(S^n) \tag{0.24}$$

for all $0 < \theta < 1$. By (0.17), (0.18), and (0.24), we get that

$$\hat{u} \in C^{1,\theta}(S^n)$$
 and $\hat{u}(P) = 0$

$$(0.25)$$

for all $0 < \theta < 1$. This is the key assertion which makes that we can apply the Pohozaev identity. Given $\Omega \subset \mathbb{R}^n$ smooth and bounded, the Pohozaev identity for u is given by

$$\frac{n-4}{2(n-2)} \int_{\partial\Omega} u^{\frac{2(n-2)}{n-4}}(x,\nu) d\sigma + \int_{\partial\Omega} (x,\nabla u)(\nu,\nabla u) d\sigma - \frac{1}{2} \int_{\partial\Omega} (x,\nu) |\nabla u|^2 d\sigma = \frac{n(n-4)}{2(n-2)} \int_{\Omega} u^{\frac{2(n-2)}{n-4}} dx - \frac{n-2}{2} \int_{\Omega} |\nabla u|^2 dx ,$$
(0.26)

where ν is the unit outward normal derivative to $\partial\Omega$. We let $\Omega = B_0(R), R \gg 1$. By (0.6),

$$u = \left(\hat{u} \circ \Phi_P^{-1}\right) \varphi \; .$$

Hence, by (0.25), we get that

$$u(x) = O\left(\frac{1}{|x|^{n-3}}\right) \text{ and } |\nabla u(x)| = O\left(\frac{1}{|x|^{n-2}}\right)$$
(0.27)

as $|x| \to +\infty$. Plugging (0.27) into (0.26), noting that by (0.1)

$$\int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} u^{\frac{2(n-2)}{n-4}} dx + \int_{\partial \Omega} u(\nu, \nabla u) d\sigma ,$$

it follows that

$$\left(\frac{n(n-4)}{2(n-2)} - \frac{n-2}{2}\right) \int_{B_0(R)} |u|^{\frac{2(n-2)}{n-4}} dx = O\left(\frac{1}{R^{n-4}}\right) \tag{0.28}$$

for all $R \gg 1$. Letting $R \to +\infty$ in (0.28), we get that u = 0. This proves Theorem 0.1.

The author thanks Frank Merle for having brought the problem to his attention, and Frédéric Robert for useful comments on these notes.

References

- Djadli, Z., Hebey, E., and Ledoux, M., Paneitz-type operators and applications, *Duke Math. J.*, 104, 129-169, 2000.
- [2] Farina, A., On the classification of solutions of the Lane-Emden equation on unbounded domains of Rⁿ, J. Math. Pures Appl., 87, 537–561, 2007.
- [3] Hebey, E., and Robert, F., Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, *Calc. Var. Partial Differential Equations*, 13, 491-517, 2001.
- [4] Li, P., and Yau, S.T., On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88, 309–318, 1983.
- [5] Paneitz, S., A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint, 1983, and SIGMA, 4, 036, 3 pages, 2008.

EMMANUEL HEBEY, UNIVERSITÉ DE CERGY-PONTOISE, DÉPARTEMENT DE MATHÉMATIQUES, SITE DE SAINT-MARTIN, 2 AVENUE ADOLPHE CHAUVIN, 95302 CERGY-PONTOISE CEDEX, FRANCE *E-mail address*: Emmanuel.Hebey@math.u-cergy.fr