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Abstract. We discuss an elementary direct proof of the nonexistence of non-

trivial solutions of supercritical solutions in invariant scaling spaces.

Let Ḣ2 be the Sobolev space in Rn of functions such that ∆u ∈ L2 with the
corresponding norm ‖u‖2H2 =

∫
Rn(∆u)2dx. We consider the equation{

∆u = |u|
4

n−4u in Rn ,
u ∈ Ḣ2(Rn) .

(0.1)

As is easily checked, the equation is supercritial with respect to the Ḣ1-control
given by the Laplacian. The feature with (0.1) is that both ‖ · ‖H2 and (0.1) are
invariant under the action of the scaling uλ(x) = λαu(λx), λ > 0. By the work of
Farina [2], (0.1) does not possess any nontrivial solution since, by the Cwikel, Lieb
and Rozenblum formula (see, for instance, Li and Yau [4]), the condition u ∈ Ḣ2

implies that u has finite Morse index (and we can apply the results in [2] for stable
equations outside compact subsets of Rn). In these short notes we propose a very
direct path to prove this result using basic conformal geometry arguments and
the underlying fourth order critical structure attached to (0.1). We assume that
n = 5, 6 and prove that the following result holds true.

Theorem 0.1. Suppose n = 5, 6. Equation (0.1) does not possess nontrivial solu-
tions.

The proof we propose is as follows. First we remark that if u solves (0.1), then
u also solves the critical fourth order equation

∆2u =
n

n− 4
|u|

8
n−4u− 4n

(n− 4)2
|u|

2(6−n)
n−4 |∇u|2u (0.2)

that we derive directly from (0.1) by letting ∆ act on (0.1). Transposing (0.1) and
(0.2) into Sn, using conformal arguments and basic regularity theory, we get that

u =
a+ f ◦ Φ−1

p

(1 + |x|2)
n−4

2

,

where ΦP is the stereographic projection of pole P , and f ∈ C1,θ(Sn) vanishes at
P . The “key” point is to prove that a = 0. Then, plugging u into the standard
Pohozaev identity over balls B0(R) of large radii, letting R→ +∞ and since a = 0,
we get that u = 0.
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Proof. The first claim is that u satisfies (0.2) in Rn in the sense of distributions.
Indeed, integrating by parts, for any ϕ ∈ Ḣ2,∫

Rn

(∆u)(∆ϕ)dx =
∫

Rn

|u|
4

n−4u(∆ϕ)dx =
n

n− 4

∫
Rn

|u|
4

n−4 (∇u∇ϕ)dx

and since Ḣ2 ⊂ Ḣ1,2n/(n−2) ⊂ L2n/(n−4), there holds that |u|
4

n−4 |∇u| ∈ L2n/(n+2).
Similarly,∫

Rn

|u|
4

n−4 (∇u∇ϕ)dx =
∫

Rn

|u|
4

n−4 (∆u)ϕdx− 4
n− 4

∫
Rn

|u|
2(6−n)

n−4 u|∇u|2ϕdx

=
∫

Rn

|u|
8

n−4uϕdx− 4
n− 4

∫
Rn

|u|
2(6−n)

n−4 u|∇u|2ϕdx

and, here again, |u|
4

n−4 (∆u), |u|
8

n−4u, |u|
2(6−n)

n−4 u|∇u|2 ∈ L2n/(n+4). As a remark,
n+4
n−4 = 2n

n−4 − 1 and 2] = 2n
n−4 is the critical Sobolev exponent for the embeddings

H2 ⊂ Lp. In particular, (0.2) is critical (while (0.1) was supercritical). Now we
let P ∈ Sn and ΦP be the stereographic projection of pole P . Let also g0 be the
standard metric on Sn. Basic Riemannian geometry gives that(

Φ−1
P

)?
g0 =

(
2

1 + |x|2

)2

δ , (0.3)

where δ is the Euclidean metric. Let ϕ,ψ : Rn → R be given by

ϕ(x) =
(

2
1 + |x|2

)n−4
2

and ψ(x) =
(

2
1 + |x|2

)n−2
2

. (0.4)

Then (0.3) rewrites as (
Φ−1
P

)?
g0 = ϕ

4
n−4 δ = ψ

4
n−2 δ (0.5)

and there also holds that ψ = ϕ
n−2
n−4 . We define û : Sn\{P} → Rn by

û =
(
u

ϕ

)
◦ ΦP , (0.6)

where ϕ is as in (0.4). Let Pg be the Paneitz [5] operator associated with a metric g.
The operator Pg is conformally invariant in the sense that for any u0 > 0 smooth,
and any w ∈ C4,

P
u

4
n−4
0 g

w = u
− n+4

n−4
0 Pg(u0w) . (0.7)

Let Pg0 be the Paneitz operator on Sn corresponding to g = g0. Then Pg0 is given
by

Pg0u = ∆2
g0u+

n2 − 2n− 4
2

∆g0u+
n(n− 4)(n2 − 4)

16
u , (0.8)

where ∆g0 = −divg0∇ is the Lapace-Beltrami operator. We also have that Pδ = ∆2.
By (0.2), (0.3), (0.5) and (0.7) we get that û as given in (0.6) satisfies that

Pg0 û =
n

n− 4
|û|

8
n−4 û− Fû (0.9)

in Sn\{P} in the sense of distributions, where

F =
4n

(n− 4)2

(
|u|

2(6−n)
n−4 |∇u|2ϕ−

8
n−4

)
◦ ΦP , (0.10)
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and ϕ is as in (0.4). Since Ḣ2 ⊂ Ḣ1,2n/(n−2) ⊂ L2n/(n−4), there holds that

F ∈ Ln
4 (Sn) . (0.11)

Indeed, we can write by (0.5) that∫
Sn

|F |n4 dvg0 =
∫

Rn

∣∣F ◦ Φ−1
P

∣∣n
4 ϕ

2n
n−4 dx

=
∫

Rn

|u|
n(6−n)
2(n−4) |∇u|n2 dx

≤
(∫

Rn

|u|
2n

n−4 dx

) 6−n
4
(∫

Rn

|∇u|
2n

n−2 dx

)n−2
4

and (0.11) follows. Let (uα)α be a sequence of smooth functions with compact
support in Rn which converge to u in Ḣ2 and almost everywhere. By conformal
invariance,∫

Rn

(
∆2(uα − uβ)

)
(uα − uβ)dx =

∫
Sn

(Pg0(ûα − ûβ)) (ûα − ûβ)dvg0 ,

where the ûα are given by the conformal rule (0.6), and since

‖u‖H2 =

√∫
Sn

(Pg0u)udvg0

is a norm on H2(Sn), we get that (ûα)α is a Cauchy sequence in H2. Since ûα → û
almost everywhere, we get that û ∈ H2(Sn). As in Hebey and Robert [3], let
(ηs)s>0 be a family of smooth functions on Sn such that 0 ≤ ηs ≤ 1, ηs = 0 in
BP (s), ηs = 1 in Sn\BP (2s), and

|∇ηs| ≤
C

s
and |∆g0ηs| ≤

C

s2
(0.12)

for all s > 0, where C > 0 does not depend on s. Let also η̃s = ηs− 1. Noting that
by Hölder’s inequalities,

lim
s→0

∫
Sn

(∆g0 û) (∆g0(η̃sv)) dvg0 = 0 ,

lim
s→0

∫
Sn

(∇g0 û∇g0(η̃sv)) dvg0 = 0 , and

lim
s→0

∫
Sn

û(η̃sv)dvg0 = 0

(0.13)

for all v ∈ H2(Sn), and that

lim
s→0

∫
Sn

|û|
8

n−4 û(η̃sv)dvg0 = 0 and lim
s→0

∫
Sn

Fû(η̃sv)dvg0 = 0 (0.14)

for all v ∈ H2(Sn) since Fû ∈ L
2n

n+4 by (0.11), we get by (0.13) and (0.14) that
û ∈ H2 satisfies (0.9) in the sense of distributions in the whole of Sn. Then, by
the regularity results in Djadli, Hebey and Ledoux [1], Lemma 2.1, we get that
û ∈ Lp(Sn) for all p ≥ 1. Now we exploit the second order equation satisfied by u.
Let Lg be the conformal Laplacian given by

Lgu = ∆gu+
n− 2

4(n− 1)
Sgu ,
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where Sg is the scalar curvature of g. Then Lg satisfies the conformal invariance
rule that for any u0 > 0 smooth, and any w ∈ C2,

L
u

4
n−2
0 g

w = u
− n+2

n−2
0 Lg(u0w) . (0.15)

Let ũ : Sn\{P} → R be given by

ũ =
(
u

ψ

)
◦ ΦP , (0.16)

where ψ is as in (0.4). There holds that

û = (ϕ ◦ ΦP )
2

n−4 ũ (0.17)

in Sn\{P}, and if Q = −P , since

ΦP ◦ Φ−1
Q (x) =

x

|x|2
,

we get that

(ϕ ◦ ΦP )
2

n−4

(
Φ−1
Q (x)

)
=

2|x|2

1 + |x|2
(0.18)

for all x ∈ Rn\{0}.

Lemma 0.1. There holds that ũ ∈ H2,n
2−ε(Sn) for all 0 < ε� 1, and

∆g0 ũ+
n(n− 2)

4
ũ = (ϕ ◦ ΦP )−

2
n−4 |û|

4
n−4 û (0.19)

in Sn in the sense of distributions.

Proof of Lemma 0.1. By (0.17) and (0.18) we have that in the chart (Sn\{Q},ΦQ),
from the viewpoint of integrability,

ũ ' 1
|x|2

û

at P , and since û ∈ Lp for all p ≥ 1 according to what we proved above, we get
that ũ ∈ Ln

2−ε(Sn) for all 0 < ε � 1. Let v ∈ C∞(Sn) and (ηs)s>0 be as above
satisfying (0.12). By (0.1), (0.5), and (0.15) there holds that∫

Sn

ũ (Lg0(ηsv)) dvg0 =
∫

Rn

(
ũ ◦ Φ−1

P

)
L(Φ−1

P )?g0

(
(ηsv) ◦ Φ−1

P

)
dv(Φ−1

P )?g0

=
∫

Rn

u∆
(
ψ
(
(ηsv) ◦ Φ−1

P

))
dx

=
∫

Rn

(
|u|

4
n−4u

)
ψ
(
(ηsv) ◦ Φ−1

P

)
dx

(0.20)

and we get that∫
Sn

ũ (Lg0(ηsv)) dvg0 =
∫
Sn

(ϕ ◦ ΦP )−
2

n−4 |û|
4

n−4 ûηsvdvg0 (0.21)

There holds that ηsv → v in Lp(Sn) for all p ≥ 1, while

∆g0(ηsv)→ ∆g0v

in L
n
2−ε for all 0 < ε � 1. Since û ∈ Lp for all p ≥ 1, there also holds by (0.18)

and Hölder’s inequalities that

(ϕ ◦ ΦP )−
2

n−4 |û|
4

n−4 û ∈ Ln
2−ε
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for all 0 < ε� 1. The conjugate exponent for n
2 is n

n−2 and we have that n
n−2 <

n
2 .

Hence,

lim
s→0

∫
Sn

ũ (Lg0(ηsv)) dvg0 =
∫
Sn

ũ(Lg0v)dvg0 , and

lim
s→0

∫
Sn

(ϕ ◦ ΦP )−
2

n−4 |û|
4

n−4 ûηsvdvg0 =
∫
Sn

(ϕ ◦ ΦP )−
2

n−4 |û|
4

n−4 ûvdvg0 ,

and we get by letting s → 0 in (0.21) that ũ satisfies (0.19) in Sn in the sense of
distributions. Since, around P , in the chart (Sn\{Q},ΦQ),

ũ =
1 + |x|2

2|x|2
û

and û ∈ H2, there clearly holds that ũ ∈ H1,p(Sn) for p > 1 sufficiently close to 1.
By regularity theory for second order elliptic equations it follows that

ũ ∈ H2,n
2−ε

for all 0 < ε� 1. This proves the lemma. �

Now we continue with the proof of Theorem 0.1. The same computations as in
(0.20) give that∫

Sn

ũLg0(ηsv)dvg0 =
∫
Sn

(ψ ◦ ΦP )
8

(n−2)(n−4) |ũ|
4

n−4 ũηsvdvg0 (0.22)

for all v ∈ C∞(Sn). By Lemma 0.1 there also holds that ũ ∈ Lp for all p ≥ 1.
Hence we can let s→ 0 in (0.22) and we get that

∆g0 ũ+
n(n− 2)

4
ũ = (ψ ◦ ΦP )

8
(n−2)(n−4) |ũ|

4
n−4 ũ (0.23)

in Sn in the sense of distributions. By regularity theory and (0.23), since ψ ◦ΦP is
bounded, we get that ũ ∈ H2,p for all p ≥ 1, and it follows that

ũ ∈ C1,θ(Sn) (0.24)

for all 0 < θ < 1. By (0.17), (0.18), and (0.24), we get that

û ∈ C1,θ(Sn) and û(P ) = 0 (0.25)

for all 0 < θ < 1. This is the key assertion which makes that we can apply the
Pohozaev identity. Given Ω ⊂ Rn smooth and bounded, the Pohozaev identity for
u is given by

n− 4
2(n− 2)

∫
∂Ω

u
2(n−2)

n−4 (x, ν)dσ +
∫
∂Ω

(x,∇u)(ν,∇u)dσ

− 1
2

∫
∂Ω

(x, ν)|∇u|2dσ =
n(n− 4)
2(n− 2)

∫
Ω

u
2(n−2)

n−4 dx− n− 2
2

∫
Ω

|∇u|2dx ,
(0.26)

where ν is the unit outward normal derivative to ∂Ω. We let Ω = B0(R), R � 1.
By (0.6),

u =
(
û ◦ Φ−1

P

)
ϕ .

Hence, by (0.25), we get that

u(x) = O

(
1

|x|n−3

)
and |∇u(x)| = O

(
1

|x|n−2

)
(0.27)
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as |x| → +∞. Plugging (0.27) into (0.26), noting that by (0.1)∫
Ω

|∇u|2dx =
∫

Ω

u
2(n−2)

n−4 dx+
∫
∂Ω

u(ν,∇u)dσ ,

it follows that(
n(n− 4)
2(n− 2)

− n− 2
2

)∫
B0(R)

|u|
2(n−2)

n−4 dx = O

(
1

Rn−4

)
(0.28)

for all R� 1. Letting R→ +∞ in (0.28), we get that u = 0. This proves Theorem
0.1. �

The author thanks Frank Merle for having brought the problem to his attention,
and Frédéric Robert for useful comments on these notes.
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