SUPER CRITICAL ENERGY SCALE INVARIANT
EQUATIONS IN CRITICAL SPACES

EMMANUEL HEBEY

ABSTRACT. We discuss an elementary direct proof of the nonexistence of non-
trivial solutions of supercritical solutions in invariant scaling spaces.

Let H? be the Sobolev space in R™ of functions such that Au € L? with the
corresponding norm ||u|3. = [5.(Au)?dz. We consider the equation

— |lyl"=3y in R™
{AU—.|u|n Ty in R™, 0.1)
u € H?(R") .
As is easily checked, the equation is supercritial with respect to the H'-control
given by the Laplacian. The feature with (0.1) is that both || - ||g2 and (0.1) are
invariant under the action of the scaling uy(z) = A®u(Az), A > 0. By the work of
Farina [2], (0.1) does not possess any nontrivial solution since, by the Cwikel, Lieb
and Rozenblum formula (see, for instance, Li and Yau [4]), the condition u € H?
implies that u has finite Morse index (and we can apply the results in [2] for stable
equations outside compact subsets of R™). In these short notes we propose a very
direct path to prove this result using basic conformal geometry arguments and
the underlying fourth order critical structure attached to (0.1). We assume that
n = 5,6 and prove that the following result holds true.

Theorem 0.1. Suppose n = 5,6. Equation (0.1) does not possess nontrivial solu-
tions.

The proof we propose is as follows. First we remark that if u solves (0.1), then
u also solves the critical fourth order equation

4dn 2(6-n)
mhﬂ n—4 |Vu|2u (02)

that we derive directly from (0.1) by letting A act on (0.1). Transposing (0.1) and
(0.2) into S™, using conformal arguments and basic regularity theory, we get that

a+ fod,!
(At )=

n
A2y =
v n—4

|u| 7Ty —

where ®p is the stereographic projection of pole P, and f € C%?(S™) vanishes at
P. The “key” point is to prove that a = 0. Then, plugging v into the standard
Pohozaev identity over balls By(R) of large radii, letting R — +o0 and since a = 0,
we get that v = 0.
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Proof. The first claim is that w satisfies (0.2) in R™ in the sense of distributions.
Indeed, integrating by parts, for any ¢ € H?,

/(Au)(Acp)dx:/ |u\ﬁu(Agp)dx:ﬁ |u| 77 (VuV ) dz
n n - R

and since H? ¢ H“2"/(n=2) ¢ [27/(n=4) there holds that |u = |Vu| € L2/ (n+2),

Similarly,

/ lu ﬁ(VUch)dx:/R |u| 7= 4(Au)g0dx—7/ T U‘VU‘ pdzx
:/ | n— 4ug0dx— 7/ = u|Vu\ gOdiL'

and, here again |u\ﬁ(Au) |u|ﬁu |u|ﬁu|Vu|2 € L/ (9 As a remark,
"fi = —1 and 2¢ = nf" is the critical Sobolev exponent for the embeddings
H? C Lp In particular, (0.2) is critical (while (0.1) was supercritical). Now we
let P € S™ and ®p be the stereographic projection of pole P. Let also gy be the

standard metric on S™. Basic Riemannian geometry gives that

2
(25") 90 = (1 +2m|2> g, (0.3)

where ¢ is the Euclidean metric. Let ¢, : R™ — R be given by

o0 = (157

Then (0.3) rewrites as

n—4 n—2
2

and (z) = ( 2 ) : (0.4)

1+ |z|?

(®51)" g0 = @776 = 472 (0.5)
and there also holds that ¢ = QDH. We define @ : S"\{P} — R"™ by

o= <Z> odp, (0.6)

where ¢ is as in (0.4). Let P, be the Paneitz [5] operator associated with a metric g.
The operator P, is conformally invariant in the sense that for any ug > 0 smooth,
and any w € C*,

_n+t4

P 4 w=uy" " Pyupw) . (0.7)

n—4
Ug g

Let P,, be the Paneitz operator on S™ corresponding to g = go. Then Py, is given
by
n? —2n—4 n(n —4)(n? — 4)
— s Agou ~+ 16 u,
where Ay, = —div,,V is the Lapace-Beltrami operator. We also have that Ps = AZ.
By (0.2), (0.3), (0.5) and (0.7) we get that @ as given in (0.6) satisfies that

Pyu= A2 u (0.8)

Pgoa_%4| a|7aa — Fa (0.9)

in S™\{P} in the sense of distributions, where

(6 n)

4n 9
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and ¢ is as in (0.4). Since H? ¢ HY?*/("=2) ¢ [2"/("=4) there holds that
FeLi(s). (0.11)
Indeed, we can write by (0.5) that

| PR, = [ [Foapt|t i

n(6—n) "
:/ |u]2=9 |Vu|2 dz

2

2n 52”" 2n "L4
< (/ |u|n4dw) (/ |Vu|n2dx)
n Rn

and (0.11) follows. Let (uq)a be a sequence of smooth functions with compact
support in R™ which converge to v in H? and almost everywhere. By conformal
invariance,

/n (A% (ua = up)) (ua — ug)de = /S (Pyo (e — 1)) (i — 5)dvyg,

where the i, are given by the conformal rule (0.6), and since

a2 = /S (Pyt)udvy,

is a norm on H2(S™), we get that (i) is a Cauchy sequence in H?. Since i, — @
almost everywhere, we get that & € H?(S™). As in Hebey and Robert [3], let
(ns)s>0 be a family of smooth functions on S™ such that 0 < n, < 1, n; = 0 in
Bp(s), ns =1 in S™\Bp(2s), and

C C
Vins| < — and |Agys| < (0.12)
for all s > 0, where C' > 0 does not depend on s. Let also s = ns — 1. Noting that

by Holder’s inequalities,

li—{% i (Agyt) (Agy(Nsv)) dvg, =0,

lir% (Vg @V gy (Nsv)) dug, =0, and (0.13)
S— Sn

211% . W(7sv)dvg, =0

for all v € H?(S™), and that

lim [ | 1 4(f,v)dvg, = 0 and lim [ Fa(ijv)dvg, =0 (0.14)
s— gn s— Sn

for all v € H%(S™) since Fu € L7 by (0.11), we get by (0.13) and (0.14) that
@ € H? satisfies (0.9) in the sense of distributions in the whole of S™. Then, by
the regularity results in Djadli, Hebey and Ledoux [1], Lemma 2.1, we get that
4 € LP(S™) for all p > 1. Now we exploit the second order equation satisfied by wu.
Let L, be the conformal Laplacian given by

n—2

Lgu = Agu + msgu 5
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where S, is the scalar curvature of g. Then L, satisfies the conformal invariance
rule that for any ug > 0 smooth, and any w € C?,

_nt2
L n4_29w =wuy " Ly(upw) . (0.15)
o
Let @ : S"\{P} — R be given by
u
a=(2)odp, 0.16
) 019
where 1 is as in (0.4). There holds that
Q= (podp)iiq (0.17)
in S"\{P}, and if @ = —P, since
1 T
@P o ¢Q (l') = W s
we get that
2/ 2|x|?
Dp)7T (95! (0)) = 0.18
(por)™ (05'0)) = 10 (018)
for all x € R™\{0}.
Lemma 0.1. There holds that i € H*%~(S") for all 0 < e < 1, and
-2 _ 2
Ayl + %a = (po®p) "1 4|70 (0.19)

in S™ in the sense of distributions.

Proof of Lemma 0.1. By (0.17) and (0.18) we have that in the chart (S"\{Q}, ®¢),
from the viewpoint of integrability,

- 1
u = WU
at P, and since @ € LP? for all p > 1 according to what we proved above, we get
that 4 € LZ75(S") for all 0 < ¢ < 1. Let v € C°°(S™) and (1s)s>0 be as above

satisfying (0.12). By (0.1), (0.5), and (0.15) there holds that

/S a (Lgo (nsv)) dvg, = /R (ﬂ ° (Ijl_Dl) L(<I>;1)*go ((773’0) ° (I)I_’l) dv@fsl)*go

:/Rn ul (¢ ((nsv) 0o @p")) da (0.20)
= [ (=) v () 0 951) o

and we get that
~ -2 4
/ (L (1s0)) oy, = / (po®p) ™ a5 anud,,  (0.21)
n S’IL

There holds that nsv — v in LP(S™) for all p > 1, while
Ay (nsv) — Agyv

in L77¢ for all 0 < ¢ < 1. Since @& € LP for all p > 1, there also holds by (0.18)
and Holder’s inequalities that

2

(po®p) "
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g)r all 0 < e < 1. The conjugate exponent for 7 is "5 and we have that -5 < 3.
ence,

liH(l) G (Lg, (nsv)) dug, :/ (Lgyv)dvg, , and
s— Sn Sn

4
1 Qudvg, ,

lin(l) (po (I)P)fﬁ [ ﬁfmsvdvgo = / (po (I)P)*ﬁ @
5— Sn gn

and we get by letting s — 0 in (0.21) that @ satisfies (0.19) in S™ in the sense of
distributions. Since, around P, in the chart (S"\{Q}, ®q),

1+ |z .

2|z|?
and @ € H?, there clearly holds that @ € H'?(S™) for p > 1 sufficiently close to 1.
By regularity theory for second order elliptic equations it follows that

e H¥%2¢

’&,:

for all 0 < € < 1. This proves the lemma. (I

Now we continue with the proof of Theorem 0.1. The same computations as in
(0.20) give that

[ ko mldoy, = [ @ o0n) T i e, (02

for all v € C*°(S™). By Lemma 0.1 there also holds that @ € LP for all p > 1.
Hence we can let s — 0 in (0.22) and we get that

-2
Ayt n(n—2) . _ (0 ®p) T || 7214 (0.23)
in S™ in the sense of distributions. By regularity theory and (0.23), since 1) o ®p is

bounded, we get that @ € H>P for all p > 1, and it follows that

i e oS (0.24)
for all 0 < # < 1. By (0.17), (0.18), and (0.24), we get that
e CH?(S™) and w(P)=0 (0.25)

for all 0 < # < 1. This is the key assertion which makes that we can apply the
Pohozaev identity. Given 2 C R™ smooth and bounded, the Pohozaev identity for
u is given by

2(n—2)

n—4
m/@ﬂu n= (x,y)da—F/BQ(a:,Vu)(V,Vu)da

1 —4 e —9
- f/ (z,v)|Vul?do = M/ T o / Vul?dz
2 Jaq 2(n—2) Jo 2 Q

where v is the unit outward normal derivative to 0€2. We let Q = By(R), R > 1.
By (0.6),

(0.26)

u = (ﬁ o <I>1§1) .
Hence, by (0.25), we get that

u(z) =0 (le’lH> and |Vu(z)| = O <m|711_2) (0.27)
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as |zr| — +oo. Plugging (0.27) into (0.26), noting that by (0.1)

/|Vu|2dx:/u24f:42) dm—i—/ u(v, Vu)do ,
Q Q oQ
it follows that

(ZEZ = ;1)) — 5 2) /BO(R) ju 5= de = O (Rnl_4) (0.28)

for all R > 1. Letting R — 400 in (0.28), we get that u = 0. This proves Theorem
0.1. O

The author thanks Frank Merle for having brought the problem to his attention,
and Frédéric Robert for useful comments on these notes.
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