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NOTE : The blue writing is what you have to write down to be able to
follow the slides presentation.

NOTE? : In what follows (Eh) refers to

∆gu + hu = u2?−1 , (Eh)

u ≥ 0 in M.
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PART III. BACK TO STABILITY.

III.1) Unstable situations :

The very first basic result is concerned with the Yamabe equation on the
sphere. The Yamabe equation in Sn is written as

∆gu +
n(n − 2)

4
u = u2?−1 , (YS)

and we know all its solution (as we know all the solutions of
∆u = u2?−1 in Rn). The solutions of (YS) are given by

ux0,β(x) =

(
n(n − 2)

4
(β2 − 1)

) n−2
4

(β − cos r)1− n
2 ,

where x0 ∈ Sn, β > 1 (including β → +∞), and r = dg (x0, x). They all
have the same energy : ∫

Sn

u2?

x0,βdvg =
1

K n
n

for all x0 ∈ Sn and all β > 1. There holds ux0,β → 0 far from x0. On the
other hand, lim

β→1
ux0,β(x0) = +∞ since ux0,β(x0) ≈ (β − 1)−(n−2)/4.
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Theorem : (the sphere case)

There are sequences (uα)α of solutions of the Yamabe equation (YS) on
the sphere Sn such that ‖uα‖L∞ → +∞ as α→ +∞.

It suffices to let uα = ux0,βα , where (βα)α is a sequence such that βα > 1
and βα → 1. Then we can show that they have an H1-decomposition like
uα = Bα + Rα, where (Bα)α is the bubble of centers xα = x0 and
weights µα ≈

√
βα − 1.

Gluing together such ux0,β ’s we easily get more sophisticated blow-up
configurations. By gluing we mean by hand constructions like

uα =
k∑

i=1

uxi,α,βα .

Making the gluing construction invariant under the action of groups the
results we can prove extend to quotients of the sphere. Letting k → +∞,
we get families of solutions with unbounded energy. These are by-hand
constructions where we “naively” compute the potentials hα for which
the uα’s solve (Ehα) and then try to find conditions on the xi,α’s and
βα’s for which we will get a nice convergence of the hα’s. The following
result holds true.
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Theorem : (Space forms constructions, Druet-H., 2004)

Let (Sn/G , g) be a space form of dimension n ≥ 6.

(i) Let 1 ≤ k1 ≤ k2 be given integers. There exist a sequence (hα)α of

smooth functions converging C 1 to n(n−2)
4 , and a sequence (uα)α of

smooth positive functions solutions of

∆guα + hαuα = u2?−1
α , (Eα)

in Sn/G for all α, such that the uα’s have bounded energy (namely
‖uα‖H1 = O(1)) and such that they blow up with k2 bubbles in their
H1-decomposition and k1 geometric blow-up points (the limits of the
centers of the bubbles).

(ii) There also exist a sequence (hα)α of smooth functions converging C 1

to n(n−2)
4 , and a sequence (uα)α of smooth positive solutions of (Eα)

such that ‖uα‖H1 → +∞ as α→ +∞.

In case (i), picking k2 > k1 we get that there are bubbles accumulating
on one single point (e.g., picking k1 = 1 and k2 ≥ 2 then k2 bubbles in
the constructions accumulate to one single point). In case (ii), the
sequence (uα)α of solutions is unbounded in H1.
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This result can be refined by using the Lyapounov-Schmidt finite
dimensional reduction method.

Theorem : (With the Lyapounov-Schmidt method)

(i) (Chen-Wei-Yan, 2011) Let (Sn, g) be the unit n-sphere, n ≥ 5. For

any λ > n(n−2)
4 there exists a sequence (uα)α of positive solutions (Eλ) in

Sn such that ‖uα‖H1 → +∞ as α→ +∞.
(ii) (Esposito-Pistoia-Vétois, 2013) Let (M, g) be a closed manifold of
positive Yamabe invariant, n ≥ 4, and h ∈ C 0,θ be such that
maxM h > 0. When n ≥ 6 and g is not conformally flat we assume that
there exists c > 0 such that the Weyl tensor Wg satisfies that
|Wg (x)| ≥ c for all x where h is positive. Then there exists a sequence
(εα)α of positive real numbers converging to zero, and a sequence (uα)α
of solutions of (Ehα), hα = n−2

4(n−1)Sg + εαh, such that (uα)α blows up in

a Bα + Rα configuration (one bubble, one geometric blow-up point).
(iii) (Robert-Vétois, 2013) Let (M, g) be a closed non conformally flat
manifold of positive Yamabe invariant, n ≥ 6. Let k ≥ 1, r ≥ 0 two
arbitrary integers. There exist sequences (hα)α and (uα)α such that
hα → n−2

4(n−1)Sg in C r and such that the (uα)α blows up in a
∑

B i
α + Rα

configuration with one single geometric blow-up point (k bubbles, one
geometric blow-up point).
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This theorem improves the preceding theorem in several remarkable ways.
In (i) we get unbounded energy solutions with a fixed potential. In (ii),
we get blow-up on very general manifolds, up to n ≥ 4, very explicit
potentials hα, and a C∞-convergence of the potentials. In (iii), we get
arbitrarily sophisticated blow-up configurations on very general manifolds,
with arbitrarily high convergence of the potentials.

The theorem leaves open the case of dimension 3. Still by the use of the
Lyapounov-Schmidt method, we can prove that :

Theorem : (The 3-dimensional case, H.-Wei, 2012)

Let (S3, g) be the 3-sphere. There exists a sequence (θk)k of positive real
numbers such that θ1 = 3

4 , θk > θ1 when k ≥ 2, and θk → +∞ as
k → +∞, with the property that to each θk is associated a sequence
(λα)α of positive real numbers converging to θk , and a sequence (uα)α
of positive solutions of (Eλα) such that (uα)α blows up in a

∑
B i
α + Rα

configuration with k geometric blow-up points (k bubbles, k geometric
blow-up points).

When k = 1, this is just the sphere case since 3
4 = n(n−2)

4 = n−2
4(n−1)Sg in

(S3, g). The result is sharp since (Bidaut-Véron and Véron) equation

(Eλ) on the sphere has a sole constant solution for all 0 < λ < n(n−2)
4 .
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III.2) The Lyapounov-Schmidt method :

We very briefly discuss the Lypounov-Schmidt method. The method has
been successfully used (in several problems) by several people among who
(the list is far to be exhaustive) S. Brendle, F. Coda-Marques, M. del
Pino, Y. Ge, M. Kowalczyk, R. Mazzeo, A.M.Micheletti, M. Musso, F.
Pacard, F. Pacella, A. Pistoia, O.Rey, F. Robert, J. Vétois, J.Wei, etc.

The general idea is to obtain solutions of equations as perturbations of a
given profile. Let (Wt,α)α be this profile, t a parameter, α ∈ N. Typically

Wt,α(x) =

 Λµα

Λ2µ2
α + |x−x0|2

n(n−2)


n−2

2

,

or a sum of such objects, and t represents both Λ and x0. The goal is to
find ϕt,α small, negligeable in front of Wt,α, such that

I ′α (Wt,α + ϕt,α) = 0

if we denote by Iα the functional associated to the equations. In rough
approximation,
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I ′α(Wt,α + ϕt,α) = I ′α(Wt,α) + I ′′α (Wt,α).(ϕt,α) + l.o.t. ,

where, by l.o.t., we mean lower order terms that we are, in this rough
presentation, going to neglict. Typically, in the Euclidean model case,
Iα = I and

I ′′α (Wt,α).(ϕ,ψ) =

∫
(∇ϕ∇ψ)− (2? − 1)

∫
W 2?−1

t,α ϕψ ,

and in the historical model studied by Rey (1990) −εα
∫
u2 was added

to the functional. Suppose I ′′α (Wt,α) ∈ L(H1, (H1)?) has no kernel. The
operator involved in I ′′α (Wt,α) is like T : H1 → H1 given by

Tϕ = ϕ−∆−1
(

(2? − 1)W 2?−2
t,α ϕ

)
and thus of the form Id − K , where K is compact. By the Freedholm

theory this means that I ′′α (Wt,α) is invertible and we can find a solution
ϕt,α to our problem. If not the case, then I ′′α (Wt,α) has a kernel. Now we
suppose, and this is a key point, that the kernel consists precisely of the
derivatives

∂Wt,α

∂t of the profile w.r.t. the parameter (this is exactly what
the Bianchi-Egnell result says for our profiles in the Euclidean model).
We can solve our problem up to this kernel and thus, since we are
working in H1, we can solve the idealized equation
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I ′α(Wt,α + ϕt,α) ≡ λα∆
∂Wt,α

∂t
.

Suppose∫
|∇∂Wt,α

∂t
|2 = γα ≥ γ0 > 0 and

∫
∇∂Wt,α

∂t
∇∂ϕt,α

∂t
= o(1)

(the latest since ϕt,α is small). Define Φα by

Φα(t) = Iα(Wt,α + ϕt,α)

(often referred to as the reduced functional). Then

Φ′α(t) = I ′α(Wt,α + ϕt,α).(
∂Wt,α

∂t
+
∂ϕt,α

∂t
)

= λαγα + o(1)

so that Φ′α(t) = 0 ⇔ λα = 0 and we get a solution to our problem. In
general,

Φα(t) = Iα(Wt,α) + l.o.t.

and we are back to Aubin type test functions computations to get an
expression of the reduced functional from which we hope to extract a
critical point.
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III.3) Extreme potentials :

The results discussed in III.1 all involve (apart in dimension 3, or in the
Chen-Wei-Yan unbounded case) sequences (hα)α of potentials which
converge to the Yamabe potential n−2

4(n−1)Sg . The questions we ask here

are : (i) can we have a limit potential which equals the Yamabe potential
at only one point, and, (ii) on the other side, what happens if not only
the limit potential but all the hα’s are equal to the Yamabe potential ?

The following theorem answers the first question.

Theorem : (Nontrivial potentials, H.-Vaugon, 2001)

Let (M, g) closed, n ≥ 4, x0 ∈ M, and g be such that Wg ≡ 0 around x0.
There exists a conformal metric g̃ ∈ [g ] such that Sg̃ is maximal at x0

and only at x0, there exists a sequence (hα)α converging smoothly to
n−2

4(n−1)Sg̃ (x0), and there exists a sequence (uα)α of smooth solutions of

(Ehα) w.r.t. g̃ which blows up in a Bα + Rα configuration with x0 as
geometric blow-up point (one bubble, x0 as geometric blow-up point).

In particular, the limit potential for blow-up may equal the Yamabe
potential at only one point. The proof of the result is based on the notion
of weakly critical and critical potentials for sharp Sobolev inequalities.
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The answer to the second question is given by the following remarkable
result of Brendle and Brendle-Marques. The result is also based on the
use of the Lyapounov-Schmidt method.

Theorem : (A counter example to the compactness conjecture, Brendle,
2008, Brendle-Marques, 2009)

Let Sn be the n-sphere, n ≥ 25. There exists a nonconformally flat metric
g̃ in Sn and a sequence (uα)α of solutions of (Eh̃), h̃ ≡ n−2

4(n−1)Sg̃ , which

blows up in a Bα + Rα configuration (one bubble, one geometric blow-up
point).

The metric g̃ in this result is chosen to be close to the standard metric of
the sphere.

All the results we described up to now are results where we contradict
compactness (blowing-up sequences of solutions of a fixed equation),
analytic stability (bounded energy sequences of solutions of perturbed
equations which blow-up), or bounded stability (unbounded energy
sequences of solutions of perturbed equations).
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III.4) Stable situations - Bounded stability :

Now we discuss a priori analysis and want to obtain stability results for
our model equation. The goal in this section is get bounded stability for
our model equation. The method in order to prove bounded stability goes
back to the seminal work of Schoen on the Yamabe equation. Given a
converging sequence (hα)α of potentials, and a sequence (uα)α of
solutions of

∆guα + hαuα = u2?−1
α , (Eα)

the idea is to modelise what a blow-up point would be (very roughly
speaking a critical point for uα, kind of local maximum, at which uα goes
to +∞), to develop a priori estimates around this hypothetical blow-up
point like if it was alone, to prove that it is indeed the case that it is
alone (isolated), and then contradict its existence by dealing with
Bα + Rα configurations (one bubble, one geometric blow-up point). In
the process, by proving that blow-up points are isolated, we prove that
the uα’s are actually bounded in H1.

There are two main results which have been proved when dealing with
bounded stability. The first one (stated with our stability terminology) is
as follows.
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Theorem : (Small potentials, Li-Zhu (n = 3), 1999 ; Druet (n ≥ 4), 2004)

Let (M, g) closed, n ≥ 3, and h ∈ C 1 be such that ∆g + h is coercive.
Assume

h <
n − 2

4(n − 1)
Sg (H1)

everywhere in M. Then (Eh) is C 1-bounded and stable.

In the case of the Yamabe equation (dealing with compactness), the
following result holds true.

Theorem : (Compactness for the Yamabe equation, Schoen, 1991 ;
Khuri-Marques-Schoen, 2009)

Let (M, g) closed, n ≥ 3, not conformally diffeomorphic to the n-sphere.
Then the Yamabe equation

∆gu +
n − 2

4(n − 1)
Sgu = u2?−1 (Y )

is bounded and compact either when g is conformally flat (and n is
arbitrary) or assuming 3 ≤ n ≤ 24 (and that the positive mass theorem
holds true) when g is nonconformally flat.
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As a very general remark, the positive mass theorem holds true when
n ≤ 7 and when g is spin in case n ≥ 8. Then the bound n ≤ 24 matches
precisely with the noncompactness result of Brendle-Marques (n ≥ 25).
Few remarks are in order.

Rk1 : When n = 3, by the H.-Wei result in S3 (resonant states which
appear at different values above 3

4 in S3) it is necessary to assume
something like (H1) in the first theorem of the preceding slides when
n = 3. By the result of Chen-Wei-Yan (existence of unbounded sequences

of solutions for (Eλ) in Sn when λ > n(n−2)
4 ), it is also necessary to

assume something like (H1) in higher dimensions.

Rk2 : Compactness turns out to be quite different from stability. The
Yamabe equation is bounded and compact on several manifolds by the
above second theorem. On the other hand, by the Esposito-Pistoia-Vétois
result, it is unstable when n ≥ 4 and by the Druet-H. and Robert-Vétois
results, complex blow-up configurations may occur.
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III.5) Stable situations - Analytic stability :

Bounded stability had to do with small potentials (h ≤ n−2
4(n−1)Sg ). We

want to recover here the full range of potentials. The following result
holds true.

Theorem : (Arbitrary potentials, Druet, 2003)

Let (M, g) closed, n ≥ 4, and h ∈ C 1 be such that ∆g + h is coercive.
Assume

h 6= n − 2

4(n − 1)
Sg (H2)

everywhere in M. Then (Eh) is C 1-analytically stable when n 6= 6.

Rks : (i) Assumption (H2) is a very natural relaxation of (H1). (ii) The
result does not require that Sg should be positive (positive Yamabe
invariant). In particular we get analytic stability in nonpositively curved
manifolds if, for instance, we assume h > 0. (iii) By the blow-up
examples we discussed above, (H2) is a necessary assumption. (iv) The
original result of Druet required a C 2-convergence of the potentials. The
C 2-convergence was later on relaxed to a C 1-convergence (H.-Druet,
2009).
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The proof of the theorem is based on the C 0-theory for blow-up (See Part
II) and the notion of range of interactions of bubbles (due to Druet). It
involves the whole machinery in the nonconformally flat case. A “lighter”
version of the proof can be given on conformally flat manifolds.

Dimension 6 was a surprise in the theorem. It has been a question for
some time to decide whether or not it was a purely technical artefact in
the result (6 is the sole dimension for which the L2-terms in µ2

α compete

with the boundary terms µ
(n−2)/2
α at the scale

√
µα). The following result

answers the question.

Proposition : (The 6-dimensional case, Druet-H., 2009)

There exist h : S6 → R, h > 6 (the RHS in (H2) on S6), a sequence
(hα)α of smooth functions in S6 converging C 1 to h, and a sequence
(uα)α of smooth positive solutions of

∆guα + hαuα = u2?−1
α

for all α, such that (uα)α blow up in a u∞ + Bα + Rα configuration with
u∞ 6≡ 0 (a positive limit profile, one bubble, one geometric blow-up
point).
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Sketch of the proof of analytic stability in the conformally case : We
sketch the proof of the analytic stability theorem in the conformally flat
case (the proof is much more intricate in the nonconformally flat case).
Let (uα)α solve

∆guα + hαuα = u2?−1
α

and be such that ‖uα‖L∞ → +∞ as α→ +∞. By (H1E ), up to passing

to a subsequence, uα = u∞ +
∑k

i=1 B
i
α + Rα with Rα → 0 in H1, and by

the C 0-theory, namely (C 0E ), we essentially have that

uα ≈ u∞ +
k∑

i=1

B i
α . (?1)

Let µα = maxi µi,α. Up to renumbering, up to passing to a subsequence,
we may assume that µα = µ1,α. Define

ũα(x) = uα
(
expxα(

√
µαx)

)
.

By the C 0-theory,

ũα(x)→ A

|x |n−2
+ ϕ(x) (?2)

in C 1
loc(B0(δ)\{0}), for some δ > 0, A > 0, where ϕ is harmonic in

B0(δ), and ϕ(0) > 0 if u∞ 6≡ 0. Equation (?2) easily follows from (?1).
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Up to conformally changing the metric we can assume that g is flat
around x1. We apply the standard Pohozaev identity to the uα’s in
Ωα = Bx1,α(δ

√
µα) :∫

Ωα

(xk∂kuα)∆uα +
n − 2

2

∫
Ωα

uα∆uα

= −
∫
∂Ωα

(xk∂kuα)∂νuα +
1

2

∫
∂Ωα

(x , ν)|∇uα|2 −
n − 2

2

∫
∂Ωα

uα∂νuα

After the conformal change of metric the new potential h̃α is essentially
like h̃α = hα − n−2

4(n−1)Sg . Using (?2) to compute the bdry terms, and

again the C 0-theory for the interior terms, we can prove that

Bdry terms in PI ≈ (ϕ(0) + o(1))µ
n−2

2
α ,

Interior terms in PI ≈
(
h(x1)− n − 2

4(n − 1)
Sg (x1) + o(1)

)
µ2
α ln

1

µα
if n = 4

Interior terms in PI ≈
(
h(x1)− n − 2

4(n − 1)
Sg (x1) + o(1)

)
µ2
α if n ≥ 5 .

This proves the theorem when n ≥ 7. When n = 4, 5 we ”a priori” only
get that u∞ ≡ 0 and we pursue (this is another story) by proving that
u∞ ≡ 0 is impossible under (H2). This proves the theorem. Q.E.D.
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Thank you for your attention !
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