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Abstract. We discuss Bopp-Podolsky-Schrödinger-Proca and Schrödinger-

Poisson-Proca systems in the case of electro-magneto-static solutions when

the background space is a closed 3-manifold. We present recent results we
obtained on these systems.

The Bopp-Podolsky theory, developed by Bopp [10], and independently by Podol-
sky [31], is a second order gauge theory for the electromagnetic field which refines
the Maxwell theory. When coupled with the Schrödinger equation it aims (as for
the Maxwell-Schrödinger theory) to describe the evolution of a charged nonrela-
tivistic quantum mechanical particle interacting with the electromagnetic field it
generates. In this theory the electromagnetic field is both generated by and drives
the particle field.

We are going to discuss two systems in this survey. One is the Bopp-Podolsky-
Schrödinger-Proca reduced system (BPSP )a given by

ℏ2

2m2
0
∆gu+Φ(x, v,A)u = up−1

a2∆2
gv +∆gv +m2

1v = 4πqu2

a2∆2
gA+∆gA+m2

1A = 4πqℏ
m2

0
Ψ(A,S)u2

(BPSP )a

with unknowns (u, v,A), where u and v are functions, u ≥ 0 in M , and A is a
1-form. Basically (see Section 1), u corresponds to the amplitude of the particle
field that we write in polar form, (v,A) represent the electromagnetic field that the
particle field creates and the whole system corresponds to an electro-magneto-static
regime. In the above equations,

Φ(x, v,A) =
ℏ2

2m2
0

|Ψ(A,S)|2 + ω2 + qv ,

Ψ(A,S) = ∇S − q

ℏ
A ,

a, q,m0,m1 > 0 are positive real numbers and ω ∈ R. Also ∆g = −divg∇ is the
Laplace-Beltrami operator when acting on functions u and v, ∆g = δd+ dδ is the
Hodge-de Rham Laplacian when acting on 1-forms A, ℏ is the reduced Planck’s
constant and p ∈ (2, 6]. Following standard notations, d is the differential, δ = −∇.
is the codifferential (it depends on g, we could have written δg to be coherent with
the ∆g notation, but this is not a very common notation) and 6 is the critical
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Sobolev exponent (when n = 3). The Coulomb gauge equation is δA = 0. We let
(BPSP )a be the saturated reduced system of four equations given by

(BPSP )a = (BPSP )a + “δA = 0” .

The positive real number a in these equations is the Bopp-Podolsky parameter.
Systems of equations like (BPSP )a and (BPSP )a are derived from a larger Bopp-
Podolsky-Schrödinger-Proca system as we will see in Section 1. The second system
corresponds to a = 0. We then get what is referred to as the Schrödinger-Poisson-
Proca reduced system (SPP ) given by

ℏ2

2m2
0
∆gu+Φ(x, v,A)u = up−1

∆gv +m2
1v = 4πqu2

∆gA+m2
1A = 4πqℏ

m2
0
Ψ(A,S)u2 .

(SPP )

Here again the unkowns are (u, v,A) and we require that u ≥ 0. As before we let
(SPP ) be the saturated reduced system of four equations given by

(SPP ) = (SPP ) + “δA = 0”

that we get from (SPP ) by adding to it the Coulomb gauge condition δA = 0.
As above systems of equations like (SPP ) and (SPP ) are derived from a larger
system (see Section 1). As a remark we chose to study our systems in the context
of closed 3-manifolds. This will have some impact as we will see below.

1. Construction of the equations

We use Lagrangian constructions. The particle field is here represented by a
function ψ and the electromagnetic field is represented by a gauge potential (A,φ),
where φ (a function) represents the electric field and A (a 1-form) represents the
magnetic field that the particle field creates. We adopt here them1-Proca formalism
meaning that a mass is given to the electromagnetic field (φ,A). The particle field ψ
is ruled by a nonlinear Schrödinger equation. In this case the one particle should be
thought as a quantum system of (a large number of) identicaly charged interacting
particles (see Erdos, Schlein and Yau [15]). The electromagnetic field (φ,A) is ruled
by the Bopp-Podolsky-Proca action in the Bopp-Podolsky-Proca model. We need
then to couple the Schrödinger and the Bopp-Podolsky-Proca actions. This is done
by using the minimum coupling rule

∂t → ∂̃t = ∂t + i
q

ℏ
φ , ∇ → ∇̃ = ∇− i

q

ℏ
A , (1.1)

where q and m0 are the charge and mass of ψ. The minimum coupling rule is
the rule traditionnally used in electrodynamics to account for all electromagnetic
interactions. The nonlinear Schrödinger Lagrangian for ψ is then given by

LNLS = iℏ
∂ψ

∂t
ψ − qφ|ψ|2 − ℏ2

2m2
0

|∇ψ − i
q

ℏ
Aψ|2 + 2

p
|ψ|p

= iℏ
∂̃ψ

∂t
ψ − ℏ2

2m2
0

|∇̃ψ|2 + 2

p
|ψ|p .

(1.2)

This is nothing but the usual nonlinear Schrödinger Lagrangian when time and
space derivative are given by the coupling (1.1). It remains now to write down the
Bopp-Podolsky-Proca Lagrangian for the field (φ,A). We assume in this section
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(and only in this section and in Sections 3 and 5) that our manifold is orientable.
We then define the Bopp-Podolsky-Proca Lagrangian LBPP by

LBPP (φ,A) =
1

8π

∣∣∣∣∂A∂t +∇φ
∣∣∣∣2 − 1

8π
|∇ ×A|2

+
m2

1

8π

(
|φ|2 − |A|2

)
+
a2

8π
LAdd(φ,A) ,

(1.3)

where a ∈ R+, ∇× = ⋆d is the curl operator (⋆ is the Hodge dual and d the usual
differentiation on forms),

LAdd(φ,A) = (−∆gφ+∇.∂tA)2 −
∣∣∆gA+ ∂t (∇φ+ ∂tA)

∣∣2
and ∆g = ∇×∇× = δd is half the Hodge-de Rham Laplacian for 1-forms (δ is the
codifferential). The blue part in (1.3) is the Maxwell part. The red part in (1.3)
is the Proca part. The orange part in (1.3) is the Bopp-Podolsky part. As already
mentioned a is the Bopp-Podolsky parameter (physically to be small). Both Proca
and Bopp-Podolsky are then corrections of the Maxwell theory. As a remark,

∥(φ,A)∥2Lorentz = |φ|2 − |A|2 ,

where the LHS is the Lorentz norm. Therefore we are indeed giving a mass m1 to
the field (φ,A) in the red part (the Proca part) of (1.3). Once we have LNLS and
LBPP we define the total action functional Stot by

Stot =

∫ ∫
(LNLS + LBPP ) dvgdt .

Assuming that ψ is of the form ψ = ueiS (polar form) with u ≥ 0, and taking the
variation of Stot with respect to u, S, φ, and A, we get four equations which, pulled
together, form the full Bopp-Podolsky-Schrödinger-Proca system

ℏ2

2m2
0
∆gu+

(
ℏ∂S

∂t + qφ+ ℏ2

2m2
0
|Ψ(A,S)|2

)
u = up−1

2u∂u
∂t + ℏ

m2
0
∇.

(
Ψ(A,S)u2

)
= 0

− 1
4π∇.

(
∂A
∂t +∇φ

)
− a2

4π∆gM(φ,A)− a2

4π
∂
∂t∇.N(φ,A) +

m2
1

4π φ = qu2

1
4π∆gA+ 1

4π
∂
∂t

(
∂A
∂t +∇φ

)
+

m2
1

4π A+ a2

4πQ(φ,A) = ℏq
m2

0
Ψ(A,S)u2 ,

(1.4)

where

Ψ(A,S) = ∇S − q

ℏ
A , M(φ,A) = −∆gφ+∇.∂tA ,

N(φ,A) = ∆gA+ ∂t (∇φ+ ∂tA) ,

Q(φ,A) = ∆gN(φ,A) +
∂2

∂t2
N(φ,A)−∇ ∂

∂t
M(φ,A) .

Letting a = 0 in (1.4) we get the Maxwell-Schrödinger-Proca system

ℏ2

2m2
0
∆gu+

(
ℏ∂S

∂t + qφ+ ℏ2

2m2
0
|Ψ(A,S)|2

)
u = up−1

2u∂u
∂t + ℏ

m2
0
∇.

(
Ψ(A,S)u2

)
= 0

− 1
4π∇.

(
∂A
∂t +∇φ

)
+

m2
1

4π φ = qu2

1
4π∆gA+ 1

4π
∂
∂t

(
∂A
∂t +∇φ

)
+

m2
1

4π A = ℏq
m2

0
Ψ(A,S)u2 .

(1.5)

Letting m1 = 0 the Proca contribution disappears. In other words:
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Value of a Value of m1 The physics behind
a ̸= 0 m1 ̸= 0 Bopp-Podolsky-Schrödinger-Proca
a = 0 m1 ̸= 0 Maxwell-Schrödinger-Proca
a ̸= 0 m1 = 0 Bopp-Podolsky-Schrödinger
a = 0 m1 = 0 Maxwell-Schrödinger

The Maxwell-Proca model is often referred to as the De Broglie-Proca model.

2. The reduced equations

We assume here that we are in the static case of the system, and therefore that
∂tu ≡ 0, ∂tφ ≡ 0 and ∂tA ≡ 0. Then we look for solutions with

S(x, t) = S(x) +
ω2

ℏ
t .

Such type of solutions are referred to as electro-magneto-static solutions. We get
standing waves solutions when S(x) ≡ 0. The above form of S(x, t) was introduced
in the paper [8] by Benci and Fortunato for the Klein-Gordon-Maxwell equations in
R3 (see also d’Avenia, Mederski and Pomponio [4]). Looking for electro-magneto-
static solutions, (1.4) can be written in the following form

ℏ2

2m2
0
∆gu+Φ(x, φ,A)u = up−1

∇.
(
Ψ(A,S)u2

)
= 0

a2∆2
gφ+∆gφ+m2

1φ = 4πqu2

a2∆
2

gA+∆gA+m2
1A = 4πℏq

m2
0
Ψ(A,S)u2 .

(2.1)

By the fourth equation in (2.1), since ∇.∆g = 0 (as δ2 = 0), the second equation
in (2.1) is nothing but the Coulomb gauge condition δA = 0, and the three other
equations give rise to (BPSP )a by noting that when δA = 0 we get that ∆gA =
∆gA, where ∆g = dδ+ δd is the Hodge-de Rham Laplacian on forms. System (2.1)

is the electro-magneto-static version of (1.4) and is nothing but (BPSP )a.

Similarly we get (SPP ) from (1.5) in the sense that (1.5) with ∂tu ≡ 0, ∂tφ ≡ 0,

∂tA ≡ 0 and S(x, t) = S(x)+ ω2

ℏ t is nothing but (SPP ). We refer to (BPSP )a and

(BPSP )a as the Bopp-Podolsky-Schrödinger-Proca system in the electro-magneto-
static case, and to (SPP ) and (SPP ) as the Schrödinger-Poisson-Proca system in
the electro-magneto-static case.

3. The derivations in (1.4)

The derivations to get (1.4) involve elementary mathematics. The terms are
quadratic, and therefore easy to derive. Basic tools complete what we need to get
(1.4). We briefly discuss the derivation of the term

A→
∫

|∇ ×A|2

from which we get the half Laplacian ∆gA in the equations. We get the result using
basic differential calculus together with elementary Hodge de Rham theory. If we
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let ωg be the volume form of (M, g), then

1

2

(
d

dA

∫
|∇ ×A|2

)
.(B) =

∫
(⋆dA, ⋆dB)ωg (quadratic +∇× = ⋆d)

= (−1)n−1

∫
(⋆dA, (⋆d⋆) ⋆ B)ωg (⋆⋆ = (−1)n−1 in Λ1)

=

∫
(⋆dA, δ ⋆ B)ωg (δ = (−1)n−1 ⋆ d ⋆ in Λn−1)

=

∫
(d ⋆ dA, ⋆B)ωg (Stokes formula)

=

∫
(⋆δdA, ⋆B)ωg (d⋆ = ⋆δ in Λ2)

=

∫
(⋆δdA) ∧ (⋆ ⋆ B) (since α ∧ (⋆β) = (α, β)ωg in Λp)

= (−1)n−1

∫
(⋆δdA) ∧B (⋆⋆ = (−1)n−1 in Λ1)

=

∫
(δdA,B)ωg (α ∧ β = (−1)n−1β ∧ α for α ∈ Λn−1, β ∈ Λ1)

Thus,

1

2

(
d

dA

∫
|∇ ×A|2

)
.(B) =

∫ (
∆gA,B

)
for all B, where ∆g = δd, δ the codifferential, d the differential.

4. The Proca contribution is necessary in the closed setting

The Proca addition is essential in the closed setting (compact manifolds without
boundaries) as the third equations in (BPSP )a and (SPP ) would imply that u ≡ 0
if m1 = 0, then that φ ≡ Cte and that A ≡ 0 is trivial if the Ricci curvature of the
manifold is positive (without the positive Ricci curvature assumption A has to be
harmonic). By the Bochner-Lichnerowicz-Weitzenböck formula for 1-forms,

(∆gA,A) =
1

2
∆g|A|2 + |∇A|2 +Rcg(A

♯, A♯) , (4.1)

where A♯ is the vector field we get from A by the musical isomorphism. The
following elementary result holds true.

Lemma 4.1. If (u, φ,A) is a solution of the m1-free version of (2.1), namely of
(2.1) with m1 = 0, then u = 0, φ is constant and also, A is zero when the Ricci
curvature of the manifold is positive.

Proof of Lemma 4.1. Integrating the third equation in (2.1) gives u ≡ 0. Then,
if we multiply the third equation in (2.1) by ∆gφ and integrate over M we get
that ∆gφ ≡ 0, and thus that φ is a constant. By the second equation in (2.1),

∆gA = ∆gA. Contracting the fourth equation in (2.1) by ∆gA and integrating
over M , we get by the Bochner-Lichnerowicz-Weitzenböck formula (4.1) for the
1-form ∆gA that

a2
∫
M

|∇∆gA|2dvg +
∫
M

|∆gA|2dvg + a2
∫
M

Rcg
(
(∆gA)

♯, (∆gA)
♯
)
dvg = 0 ,
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where (∆gA)
♯ is the vector field we get from ∆gA by the musical isomorphism.

When Rcg > 0 in the sense of bilinear forms this implies that ∆gA ≡ 0, and
since there are no harmonic 1-forms when the Ricci curvature is positive (another
immediate consequence of the Bochner-Lichnerowicz-Weitzenböck formula), we get
that A ≡ 0 is trivial. □

5. What about Maxwell and the gauge invariance

There is a link between the Maxwell-Schrödinger-Proca system (1.5) and the
classical Maxwell equations in modern format. We define the electric field E, the
magnetic induction H, the charge density ρ and the current density J by the equa-
tions

E = − 1

4π

(
∂A

∂t
+∇φ

)
, H =

1

4π
∇×A ,

ρ = qu2 , J =
ℏq
m2

0

(
∇S − q

ℏ
A
)
u2 .

Since ∆g = ∇×∇×, the two last equations in (1.5) rewrite as

∇.E +
m2

1

4π
φ = ρ ,

∇×H − ∂E

∂t
+
m2

1

4π
A = J

and thus they rewrite as the first pair of the Maxwell-Proca equations with respect
to a matter distribution whose charge and current density are respectively ρ and
J . As usual, we get for free that the second pair of the equations holds true. Then
the two last equations in (1.5) can be rewritten in the form of the massive modified
Maxwell equations in SI units

∇.E = ρ/ε0 − µ2φ ,

∇×H = µ0

(
J + ε0

∂E

∂t

)
− µ2A ,

∇× E +
∂H

∂t
= 0 , ∇.H = 0 ,

(5.1)

where, here, ε0 = 1, µ0 = 1 and µ2 =
m2

1

4π . Such equations were discussed in
Schrödinger [34].
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They also have been discussed by several other physicists. In addition to Proca and
Schrödinger we could name De Broglie, Pauli, Yukawa, Stueckelberg. . . The point in
these theories is that m1 is nothing but the mass of the photon and we are therefore
talking about a theory where photons have a mass. Recall that “the photon is the
quantum of the electromagnetic field including electromagnetic radiation such as
light, and the force carrier for the electromagnetic force” (Wikipedia). Physicists
speak also of W bosons when the particles are massive (the W boson has mass
approximatively 81 Gev, which means that it weights as 81 protons). More on this
can be found in the survey papers by Gillies, Luo and Tu [29] and by Goldhaber and
Nieto [18, 19]. We refer also to Adelberger, Dvali and Gruzinov [1] and Spallicci
[35, 36].

Underlined text: . . . la Mécanique ondulatoire du photon . . .

il a été attribué au photon une masse propre extrêmement petite,

mais non nulle . . . des équations du type classique de Maxwell

complétées par des petits termes contenant la masse propre. . . . on leur

donne aujourd’hui dans la théorie du méson, le nom d’équations de Proca.

The first equation in (1.5) is a nonlinear Schrödinger equation. The second equation

in (1.5) is the charge continuity equation ∂ρ
∂t +∇.J = 0. This equation turns out

to be equivalent to the Lorenz condition

∇.A+
∂φ

∂t
= 0 (5.2)

when m1 ̸= 0 (and thus as soon as there is a nonzero Proca mass). This is easily
seen by taking the derivative in time of the first equation in (5.1) and the divergence
of the second equation in (5.1). In doing so we get that

∂ρ

∂t
+∇.J = µ2

(
∇.A+

∂φ

∂t

)
.

In other words, the condition m1 ̸= 0 (which turns out to be equivalent to µ ̸= 0
since 4πµ2 = m2

1) breaks the gauge invariance and enforces the Lorenz gauge. When
φ is static we get the Coulomb gauge condition δA = 0 from (5.2).
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The particle data group page about the photon. The mass of particles

are often given in ev since Einstein’s formula E = mc2.
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6. A short discussion on Bopp-Podolsky-Proca

We very briefly discuss the Bopp-Podolsky-Proca equations in vaccum. More
on the Maxwell-Proca and the Bopp-Podolsky models can be found in Cuzinatto-
De Morais-Medeiros-Naldoni de Souza-Pimentel [11] and Zayats [45]. We adopt
their notations here. Several other references are possible. The equations for the
Maxwell-Proca electrodynamics in vacuum with Lorenz condition are

□Φ+m2Φ = 0 , (6.1)

where Φ represents the full field consisting of φ and A, and □ is the d’Alembert
operator. This is exactly what we get with the two last equations in (1.5) with
the unit c = 1, m = m1 and when we cancel the u-terms in these equations (our
convention on ∆g makes that in the case of the Euclidean metric we get −∆, where

∆ =
∑

i
∂2

∂x2
i
). Remember, see above, that the Lorenz condition gives that ∂tφ = δA.

Then equation (6.1) describes photons with (small) mass m. The equations for the
Bopp-Podolsky electrodynamics in vacuum are

a2□2Φ+□Φ = 0 . (6.2)

The equations in the case of Bopp-Podolsky-Proca are

a2□2Φ+□Φ+m2Φ = 0 . (6.3)

The traditional interpretation for (6.2) is that the equation splits into two second
order equations

□Φ̂ = 0 ,

□Φ̃ +
1

a2
Φ̃ = 0 ,

(6.4)

where Φ̂ = a2□Φ + Φ and Φ̃ = a2□Φ. These two equations give two kinds of
photons. The first equation in (6.4) describes massless photons and the second
equation in (6.4) describes massive photons (with mass of the order of 1/a). A
theory with massless and massive photons requires fourth order equations, and as
far as Bopp-Podolsky is involved, a > 0 is small. A similar interpretation can be
given for (6.3). Define {

Φ̂ = □Φ+ 1+
√
∆

2a2 Φ

Φ̃ = □Φ+ 1−
√
∆

2a2 Φ ,

where ∆ = 1− 4a2m2. Then{
□Φ̂ + 1−

√
∆

2a2 Φ̂ = 0

□Φ̃ + 1+
√
∆

2a2 Φ̃ = 0 .
(6.5)

In this situation, we recover photons with “small” mass of the order of m by the
first equation in (6.5), and massive photons with mass of the order of 1/a by the
second equation in (6.5), the point here being that

1−
√
∆

2a2
≃ m2 and

1 +
√
∆

2a2
≃ 1

a2

as a→ 0+. Given δ > 0, if we let m = ma with

m2
a = δ(1− δa2) , (6.6)
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then
1−

√
∆

2a2
= δ and

1 +
√
∆

2a2
=

1− a2δ

a2

and we get photons with mass
√
δ and massive photons with mass of the order of

1/a. As a remark, one can choose to get two massive photons by letting m = ma

with ma as in (6.6), but now with δ = δa, δa → +∞ and a2δa ≤ 1
2 for instance.

7. Short Biographies

(The biographies are from Wikipedia.)

In Romania, Alexandru Proca was one of the eminent students at the Gheorghe
Lazǎr High School and the Politehnica University in Bucharest. With a very strong
interest in theoretical physics, he went to Paris where he graduated in Science from
the Paris-Sorbonne University, receiving from the hand of Marie Curie his diploma
of Bachelor of Science degree. After that he was employed as a researcher/physicist
at the Radium Institute in Paris in 1925. He carried out Ph.D. studies in theoretical
physics under the supervision of Nobel laureate Louis de Broglie. He defended
successfully his Ph.D. thesis entitled ”On the relativistic theory of Dirac’s electron”
in front of an examination committee chaired by the Nobel laureate Jean Perrin.
In 1929, Proca became the editor of the influential physics journal Les Annales
de l’Institut Henri Poincaré. Then, in 1934, he spent an entire year with Erwin
Schrödinger in Berlin, and visited for a few months with Nobel laureate Niels Bohr
in Copenhagen where he also met Werner Heisenberg and George Gamow.

Alexandru Proca Boris Podolsky Fritz Bopp
1897-1955 1896-1966 1909-1987

In 1896, Boris Podolsky was born into a poor Jewish family in Taganrog, in the
Don Host Oblast of the Russian Empire, and he moved to the United States in
1913. After receiving a Bachelor of Science degree in Electrical Engineering from
the University of Southern California in 1918, he served in the US Army and then
worked at the Los Angeles Bureau of Power and Light. In 1926, he obtained an MS
in Mathematics from the University of Southern California. In 1928, he received
a PhD in Theoretical Physics (under Paul Sophus Epstein) from Caltech. Under
a National Research Council Fellowship, Podolsky spent a year at the University
of California, Berkeley, followed by a year at Leipzig University. In 1930, he re-
turned to Caltech, working with Richard C. Tolman for one year. He then went to
the Ukrainian Institute of Physics and Technology (Kharkiv, USSR), collaborating
with Vladimir Fock, Paul Dirac (who was there on a visit), and Lev Landau. In
1932 he published a seminal early paper on Quantum Electrodynamics with Dirac
and Fock. In 1933, he returned to the US with a fellowship from the Institute for
Advanced Study, Princeton. In a letter dated November 10, 1933, to Abraham
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Flexner, founding Director of the Institute for Advanced Study at Princeton, Ein-
stein described Podolsky as “one of the most brilliant of the younger men who has
worked and published with Dirac.” In 1935, Podolsky took a post as professor of
mathematical physics at the University of Cincinnati. In 1961, he moved to Xavier
University, Cincinnati, where he worked until his death in 1966.

Friedrich Arnold “Fritz” Bopp was a German theoretical physicist who con-
tributed to nuclear physics and quantum field theory. He worked at the Kaiser-
Wilhelm Institut für Physik and with the Uranverein. He was a professor at
the Ludwig Maximilian University of Munich and a President of the Deutsche
Physikalische Gesellschaft. He signed the Göttingen Manifesto. From 1929 to
1934, Bopp studied physics at the Goethe University Frankfurt and the University
of Göttingen. He completed his Diplom thesis in 1933 under the mathematician
Hermann Weyl. In 1934, he became an Assistant at Göttingen. In 1937, Bopp
completed his doctorate on the subject of Compton scattering under the physicist
Fritz Sauter. From 1936 to 1941, he was a teaching assistant at Breslau University.
In 1941, Bopp completed his Habilitationsschrift under Erwin Fues on the subject
of a consistent field theory of the electron. From 1941 to 1947, Bopp was a staff
scientist at the Kaiser-Wilhelm Institut für Physik (KWIP, after World War II
reorganized and renamed the Max Planck Institute for Physics), located in Berlin-
Dahlem. From 1946 to 1947, Bopp was also a teaching assistant at the University
of Tübingen. From 1947 to 1950, Bopp was an extraordinarius professor and in
1950 an ordinarius professor of theoretical physics at the Institute of Theoretical
Physics of the Ludwig Maximilian University of Munich. His main area of interest
was quantum field theory. In 1954, he was a member of the board of trustees of the
Institute. During 1956 and 1957, Bopp was a member of the Arbeitskreis Kern-
physik (Nuclear Physics Working Group) of the Fachkommission II Forschung und
Nachwuchs (Commission II Research and Growth) of the Deutschen Atomkommis-
sion (DAtK, German Atomic Energy Commission). From 1964 to 1965, Bopp was
the President of the Deutsche Physikalische Gesellschaft.

8. The results we obtained on (BPSP )a and (SPP )

The Maxwell-Proca and Bopp-Podolsky-Proca models that we couple with the
Schrödinger equation (in the electro-static and electro-magneto-static cases) were
investigated in the case of closed manifolds in Hebey [21, 22, 23], Hebey and Wei
[25] and Thizy in the series of papers [39, 40, 41, 42, 43]. We refer also to Azzollini-
d’Avenia-Pomponio [6], d’Avenia, Mederski and Pomponio [4], d’Avenia and Sicil-
iano [5], Benci-Fortunato [7, 8, 9], Figueiredo-Siciliano [16], Ianni [26] and Ianni
and Vaira [27] for these equations when the ground space is the Euclidean space
and (in almost all of these papers) the Proca mass is set to zero. This list is far
from being exhaustive.

We concentrate here on electro-magneto-static solutions to our equations, in
the case of closed 3-manifolds, and thus we concentrate on the reduced equations
(BPSP )a and (SPP ) of the introduction. This mainly concerns (in this very
specific context) the papers Hebey [21, 22, 23]. There is a notion of critical exponent
for Sobolev embeddings. In dimension 3 the critical exponent is 6. This explains the
restriction p ≤ 6. The equations are subcritical when p < 6 and critical precisely
when p = 6. We also assume that p ≥ 22

5 (though there are situations where we
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can go down at least to 4). A coercive operator like ∆g + Λg has positive mass
(resp. nonnegative mass) if the regular part of its Green’s function is positive (resp.
nonnegative) on the diagonal. By the positive mass theorem of Schoen and Yau
[33] (see also Witten [44]), there exists a function Λg (with Λg > 0 in M) such that
∆g +Λg has positive mass when the scalar curvature Sg of the manifold is positive.
A condition we will use in the critical case of the exponent is that

ω2 +
ℏ2

2m2
0

|∇S|2 < ℏ2

2m2
0

Λg (8.1)

in M , where Λg > 0 is smooth and such that ∆g + Λg has nonnegative mass. In
the case of the standard 3-sphere we can take Λg = 3

4 , and this is the best possible
value. We discuss four questions here:

(1) Existence of a solution to our systems,
(2) Robustness of our systems with respect to variations of the parameters,
(3) Strong convergence of the Bopp-Podolsky-Proca system (BPSP )a to the

Schrödinger-Poisson-Proca system (SPP ) as the Bopp-Podolsky parameter
a→ 0.

(4) Collapsing of the Bopp-Podolsky-Proca system (BPSP )a to the sole
Schrödinger equation as the Bopp-Podolsky parameter a→ 0.

We present six theorems below. Theorem A answers the first question. Theorems
B, C and D answer the second question. Theorem E answers the third question
and Theorem F answers the fourth question. We start with the answers to the first
question about existence. We let Rcg be the Ricci curvature of g.

Theorem A (Existence for (BPSP )a and (SPP )). Let (M, g) be a smooth closed
3-manifold, ω ∈ R, a ∈ R+ be a nonnegative real number, q,m0,m1 > 0 be positive
real numbers and S ∈ C∞

R (M) be a smooth real-valued function. Let p ∈ [ 225 , 6].

We assume that Rcg + m2
1g > 0 in the sense of bilinear forms when a = 0, that

am1 <
1
2 and when p is critical from the viewpoint of Sobolev embeddings, namely

when p = 6, we also assume that (8.1) holds true. Then both (BPSP )a when a > 0,
and (SPP ) when a = 0, possess a smooth nontrivial solution (u, v,A) with u > 0
and v > 0 in M . Also A ̸≡ 0 when ∇S ̸≡ 0.

Theorem A is proved in Hebey [21] and [23]. It leaves a question open: find a
solution which includes the Coulomb gauge condition δA = 0. A specific answer
(corresponding to a special choice of S) in the case of the Euclidean space is given
in Benci-Fortunato [8] and d’Avenia, Mederski and Pomponio [4].

Going on, passing to the second question, robustness of the systems with respect
to variations of the parameters is evaluated in terms of the notion of stability which
has been intensively discussed in book form in Hebey [20]. Let (aα)α, (mα)α, (ωα)α
be sequences of real numbers and (Sα)α be a sequence of functions. Given α integer
we define

(BPSP )α
def
= (BPSP )aα

when (ωα,mα, Sα) is in place of (ω,m1, S) ,

(SPP )α
def
= (SPP ) when (ωα,mα, Sα) is in place of (ω,m1, S) .

In other words we get two sequences of systems. For any α, (SPP )α is like (SPP )
when ω is replaced by ωα, m1 is replaced by mα and S is replaced by Sα, while
(BPSP )α is like (BPSP )a when a is replaced by aα, ω is replaced by ωα, m1 is
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replaced by mα and S is replaced by Sα. In some occasions we could have also
authorized p to vary (e.g. see Hebey [21]). What we refer to as strong robustness
here is what was referred to as bounded stability in Hebey [20]. Obviously, strong
robustness implies compactness of the equations. Concerning Theorem B, but also
Theorems C, E and F, the (BPSP )a’s and (SPP )’s equations could have been
replaced by (BPSP )a and (SPP ) since the Coulomb gauge condition is preserved
under the convergences we do prove for the Aα’s. As a general remark for Theorems
B, C, E and F, a (nonnegative) solution u to the first equation in (BPSP )a or
(SPP ) is either everywhere 0 or everywhere positive (an easy consequence of the
maximum principle).

Theorem B (Strong Robustness for (BPSP )a). Let (M, g) be a smooth closed
3-manifold, ω ∈ R, a, q,m0,m1 > 0 be positive real numbers and S ∈ C∞

R (M)
be a smooth real-valued function. Let p ∈ [ 225 , 6]. When p is critical from the
viewpoint of Sobolev embeddings, namely when p = 6, we assume that (8.1) holds
true. Then (BPSP )a is strongly robust with respect to variations of its coefficients
in the sense that for any sequence (aα)α of real numbers converging to a, for any
sequence (ωα)α of real numbers converging to ω, for any sequence (mα)α of real
numbers converging to m1, for any sequence (Sα)α of smooth real valued functions

converging in C1,θ
R to S for some θ ∈ (0, 1) and for any sequence ((uα, vα, Aα))α of

solutions of (BPSP )α, there holds that, up to passing to a subsequence, uα → u in
C2

R, vα → v in C2
R, Aα → A in C2

V and (u, v,A) solve (BPSP )a. When am1 <
1
2

there also holds that u > 0 and v > 0 in M if (uα)α is nontrivial. Also A ̸≡ 0 when
u > 0 and ∇S ̸≡ 0.

Theorem B is proved in Hebey [21]. We did not have the aα’s and mα’s in [21]
(the aα’s were fixed to a and the mα’s were fixed to m1 > 0) but this variation
implies no essential changes in the proof (since the aα’s here, contrary to what is
discussed in Theorem E, stay far from zero).

Theorem C (Strong Robustness for (SPP )). Let (M, g) be a smooth closed 3-
manifold, ω ∈ R, q,m0,m1 > 0 be positive real numbers and S ∈ C∞

R (M) be a
smooth real-valued function. Let p ∈ [ 225 , 6]. We assume that Rcg + m2

1g > 0
in the sense of bilinear forms and when p is critical from the viewpoint of Sobolev
embeddings, namely when p = 6, we also assume that (8.1) holds true. Then (SPP )
is strongly robust with respect to variations of its coefficients in the sense that for
any sequence (ωα)α of real numbers converging to ω, for any sequence (mα)α of real
numbers converging to m1, for any sequence (Sα)α of smooth real valued functions

converging in C1,θ
R to S for some θ ∈ (0, 1) and for any sequence ((uα, vα, Aα))α

of solutions of (SPP )α, there holds that, up to passing to a subsequence, uα → u
in C2

R, vα → v in C2
R, Aα → A in C2

V and (u, v,A) solve (SPP ). Moreover u > 0
and v > 0 in M if (uα)α is nontrivial. Also A ̸≡ 0 when u > 0 and ∇S ̸≡ 0.

Theorem C is proved in Hebey [23]. We did not have the mα’s in [23] (the mα’s
were fixed to m1 > 0) but, here again, this variation implies no essential changes
in the proof. Theorems B and C might seem natural to a non expert. This is true
in the subcritical case, but not in the critical case which often generates unstable
solutions. In this specific context one might refer to the blowing-up examples in
Hebey and Wei [25]. Suppose M = S3. It is proved there that there exists an

increasing sequence (ωk)k≥1 of phases such that ω1 =
√
3ℏ

2
√
2m0

, such that ωk → +∞
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as k → +∞, and such that both all the −ωk’s and ωk’s are unstable in the sense
that: for any k, there exists a sequence (ωα)α of real numbers such that ω2

α → ω2
k

as α→ +∞, and there exist sequences (uα)α and (vα)α of functions satisfying that{
ℏ2

2m2
0
∆guα + ω2

αuα + qvαuα = up−1
α

∆gvα +m2
1vα = 4πqu2α

(8.2)

for all α ∈ N, with the property that ∥uα∥L∞
R

→ +∞ as α → +∞ (and therefore
also ∥vα∥C2

R
→ +∞ as α→ +∞) and the additional property that the uα’s exhibit

k single isolated bumps in their blow-up processes. This equation (8.2) is nothing

but (SPP )α when mα = m1, Aα ≡ 0 and Sα ≡ 0 for all α. Also Λ0 =
√
3ℏ

2
√
2m0

is

nothing but than the square root of the quantity in the RHS of (8.1) in the case of
S3. In other words, resonant frequencies appear outside (−Λ0,+Λ0), starting with
±Λ0, and the threshold Λ0 is critical for ω. A general theorem was recently proved
in Hebey [24]. We let

Φ(ω,S)(v,A).(x) = Φ(x, v,A)

in Theorem D, and let also G = O(2) × A be the subgroup of O(4) consisting of
the isometries of S3 which act on S3 by acting through a O(2)-isometry on the two
first variables of R2 and by either IdR2 of −IdR2 on the two last variables.

Theorem D (Existence of blowing-up sequences). Let (S3, g) be the unit 3-sphere,
q,m0,m1 > 0 be positive real numbers and S ∈ C∞(S3) be a smooth G-invariant
function. There exists a sequence (ωk)k≥1 in [Λ0,+∞[ such that ω1 = Λ0 and
ωk → +∞ as k → +∞ satisfying the following property: for any k ≥ 1, there exists
a sequence (ωα)α converging to ωk as α → +∞, and there exists a sequence (εα)α
of positive real numbers converging to zero, such that, for any α, the system

ℏ2

2m2
0
∆gu+Φα(v,A)u = u5

a2∆2
gv +∆gv +m2

1v = 4πqu2

a2∆2
gA+∆gA+m2

1A = 4πqℏ
m2

0
Ψ(A,Sα)u

2 ,

(Sysα)

where Sα = 1+εαS and Φα(v,A) = Φ(ωα,Sα)(v,A), possesses a solution (uα, vα, Aα)
such that (uα)α blows up with θ(k) spikes as k → +∞, meaning that there exist
θ(k) points P1, . . . , Pθ(k) ∈ S3 such that uα(Pi) → +∞ for all i and such that
∥uα∥L∞

loc(S
3\{Pi,i=1,...,θ(k)}) → 0 as α → +∞ . There holds that θ(1) = 1 and

θ(k) ≥ k for all k. Moreover, ∥vα∥L∞ → 0 and ∥Aα∥L∞ → 0 as α → +∞ so
that, for any k ≥ 1, the system (Sysα) formally collapses to the single equation
ℏ2

2m2
0
∆gu+ ω2

ku = u5.

Going on, passing to the third question, we want to discuss what happens to
(BPSP )a as a → 0. There we are asking whether or not a fourth order system
converges in a strong sense to a second order system. We slightly change the
definition of (BPSP )α for Theorems E and F. For (aα)α a sequence of positive real
numbers, and (mα)α another sequence of positive real numbers, we let

(BPSP )α
def
= (BPSP )aα

when mα is in place of m1 .

In other words, we do not touch to ω and S in Theorems E and F below (we could
have) and (BPSP )α is like (BPSP )a when a is replaced by aα and m1 is replaced
by mα. The point of course in Theorems E and F is that we aim to send aα → 0.
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In what follows H2
R (resp. H2

V ) stands for the Sobolev space of functions (resp.
1-forms) with two derivatives in L2. By Sobolev, H2 ⊂ C0,θ for all θ ∈ (0, 1).

Theorem E (Strong convergence of (BPSP )a to (SPP ) as a → 0). Let (M, g)
be a smooth closed 3-manifold, ω ∈ R, q,m0,m1 > 0 be positive real numbers
and S ∈ C∞

R (M) be a smooth real-valued function. Let p ∈ [ 225 , 6]. We assume

that Rcg + m2
1g > 0 in the sense of bilinear forms and when p is critical from

the viewpoint of Sobolev embeddings, namely when p = 6, we also assume that
(8.1) holds true. Then for any sequence (aα)α of positive real numbers converging
to zero, any sequence (mα)α of positive real numbers converging to m1, and any
sequence ((uα, vα, Aα))α of solutions of (BPSP )α, there holds that, up to passing

to a subsequence, (uα, vα, Aα) → (u, v,A) in C2,θ
R ×H2

R ×H2
V as α → +∞, where

(u, v,A) is a solution of (SPP ), with u > 0 and v > 0 in M as soon as (uα)α is
nontrivial, and also A ̸≡ 0 as soon as (uα)α is nontrivial and ∇S ̸≡ 0.

Theorem E describes a noncollapsing situation. Another reference where such a
convergence (in the case of specific solutions) is obtained is d’Avenia and Siciliano
[5]. Theorem F below addresses on the contrary the collapsing case. We let (S) be
the Schrödinger equation

ℏ2

2m2
0

∆gu+Φ0u = up−1 , (S)

where Φ0 = ω2 + ℏ2

2m2
0
|∇S|2. In Theorem E, mα → m1 as α → +∞, where

m1 > 0, while in Theorem F, mα → +∞. The two situations could correspond to
the equations

m2
α =

1−
√
1− 4a2αm

2
1

2a2α
,

m2
α =

1 +
√
1− 4a2αm

2
1

2a2α
as they are discussed in Section 6.

Theorem F (Collapsing of (BPSP )a to (S) as a → 0). Let (M, g) be a smooth
closed 3-manifold, ω ∈ R, a, q,m0 > 0 be positive real numbers and S ∈ C∞

R (M)
be a smooth real-valued function. Let p ∈ [ 225 , 6]. When p is critical from the
viewpoint of Sobolev embeddings, namely when p = 6, we assume that (8.1) holds
true. Then for any sequence (aα)α of positive real numbers converging to zero,
for any sequence (mα)α of positive real numbers converging to +∞ and for any
sequence ((uα, vα, Aα))α of solutions of (BPSP )α, there holds that , up to passing

to a subsequence, (uα, vα, Aα) → (u, 0, 0) in C2,θ
R ×H2

R ×H2
V as α→ +∞, where u

is a solution of (S). Moreover u > 0 in M if (uα)α is nontrivial and either ω ̸= 0
or ∇S ̸≡ 0.

9. Few (very few) words on the proofs

We very briefly discuss the proofs of Theorems A and B in the case of (BPSP )a
and present the outline of the analysis in a series of steps that are more and more
intricate. We may here assume p > 4. Let Hk

R be the Sobolev space of functions in
L2 with k derivatives in L2 and Hk

V be the corresponding space for 1-forms. The
first two steps belong to the linear world.



16 EMMANUEL HEBEY

Level 1: Linear analysis.1

The first result one can prove is that for any u ∈ H1
R, there exists a unique

A(u) ∈ H4
V ∩ C2

V such that

a2∆2
gA(u) + ∆gA(u) +

(
m2

1 +
4πq2

m2
0

u2
)
A(u) =

4πqℏ
m2

0

(∇S)u2 .

Then we also get that there exist C,C ′ > 0 such that

∥A(u)∥H2
V
≤ C∥u∥L2

R
min(1, ∥u∥L2

R
)

and

∥A(u)∥H4
V
≤ C ′′

(
1 + ∥u∥2L4

R

)
∥u∥L4

R

for all u ∈ H1
R. In addition the map A : H1

R → H2
V is locally Lipschitz and

differentiable with A′
u given by

a2∆2
gA

′
u(h) + ∆gA

′
u(h) +

(
m2

1 +
4πq2

m2
0

u2
)
A′

u(h)

=
8πqℏ
m2

0

u
(
∇S − q

ℏ
A(u)

)
h , h ∈ H1

R .

Let I1 : H1
R → R be given by

I1(u) =
∫
M

(
∇S − q

ℏ
A(u),∇S

)
u2dvg . (9.1)

Thanks to the above we get that I1 is differentiable and

I ′
1(u).(v) = 2

∫
M

∣∣∣∇S − q

ℏ
A(u)

∣∣∣2 uhdvg (9.2)

for all u, v ∈ H1
R. All this can be proved using variational analysis and elliptic

regularity type arguments.

Level 2: Linear analysis.2

The second result one can prove is that for any u ∈ H1
R, there exists a unique

v(u) ∈ H4
R ∩ C2

R such that

a2∆2
gv(u) + ∆gv(u) +m2

1v(u) = 4πqu2 .

Then we can also prove that there exist C,C ′ > 0 such that the following two
estimates hold. Namely,

∥v(u)∥H2
R
≤ C∥u∥2L2

R
, and

∥v(u)∥H4
R
≤ C ′∥u∥2L4

R

for all u ∈ H1
R. Moreover v : H1

R → H2
R is locally Lipschitz and there also holds

that v : H1
R → H2

R is differentiable with the property that for any u ∈ H1
R its

differential v′u ∈ L(H1
R, H

2
R) is given by

a2∆2
gv

′
u(h) + ∆gv

′
u(h) +m2

1v
′
u(h) = 8πquh

for all h ∈ H1
R. Let I2 : H1

R → R be given by

I2(u) =
∫
M

v(u)u2dvg . (9.3)
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Then I2 is differentiable and

I ′
2(u).(v) = 4

∫
M

v(u)uvdvg (9.4)

for all u, v ∈ H1
R. Here again all this can be proved using variational analysis and

elliptic regularity type arguments.

Level 3: Coercive functional analysis

Another result we need is the following. This is where the condition

am1 <
1

2

comes into the story. Let v : H1
R → H2

R be the map in Level 2. Assuming that
am1 <

1
2 there holds that v(u) ≥ 0 for all u ∈ H1

R and that there exists ε0 > 0,
independent of u, such that∫

M

(
|∇u|2 + v(u)u2

)
dvg ≥ ε0∥u∥2H1

R
min

(
1, ∥u∥2H1

R

)
(9.5)

for all u ∈ H1
R. The point here is that we easily get the existence of a1, a2, a3, a4 > 0

such that
a2∆2

g +∆g +m2
1 = (a1∆g + a2) (a3∆g + a4) .

if κ = a1

a2
satisfies that

m2
1κ

2 − κ+ a2 = 0 .

The discriminant is given by

∆ = 1− 4a2m2
1 .

The condition am1 <
1
2 guarantees the splitting.

Thanks to Levels 1 to 3 the problem has a variational structure that we can han-
dle. The variational structure is going to be useful on what concerns the existence
of a solution, but not so much on what concerns compactness.

Level 4: Functional setting

The following result directly follows from Levels 1 to 3. Let 2 < p ≤ 6. Assume
that am1 <

1
2 . Define Ip : H1

R → R to be the functional

Ip(u) =
ℏ2

4m2
0

∫
M

|∇u|2dvg +
ω2

2

∫
M

u2dvg

+
q

4

∫
M

v(u)u2dvg +
ℏ2

4m2
0

∫
M

(
∇S − q

ℏ
A(u),∇S

)
u2dvg

− 1

p

∫
M

(u+)pdvg ,

where A and v are as in Levels 1 and 2, and where u+ = max(0, u). Then Ip is
differentiable and if u is a critical point of Ip, on can prove that (u, v(u), A(u)) is a
smooth solution of (BPSP )a with u, v ≥ 0.

Level 5: Existence of a solution

We prove existence of a solution in the subcritical case by using level 4 and the
mountain pass lemma of Ambrosetti-Rabinowitz [2]. Basically if one starts low,
then has to climb a mountain, and goes down again, then he gets a Palais-Smale
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sequence for his functional. Basically the energy converges and the derivative of
the energy goes to zero. By compactness of the embeddings, which is given for free
in the subcritical case, we get a critical point at the limit.

In the critical case we use the MPL combined with the test functions introduced
by Schoen in his resolution of the 3-dimensional Yamabe problem. Given u0 ∈ H1

R,
define

c(u0) = inf
P∈P

max
u∈P

I6(u) ,

where P denotes the class of continuous paths joining 0 to u0 and I6 is the functional
Ip in the critical case p = 6. Picking u0 as a Schoen’s test function, assuming the
critical condition (8.1), there exists δ0 > 0 such that

δ0 ≤ c(u0) ≤
1

3K3
3

− δ0 ,

where K3 is the sharp constant in the Euclidean Sobolev inequality. Then the
Aubin-Brézis-Nirenberg arguments work for MPL. We are below the best constant
and we recover compactness. As in the subcritical case we then get a critical point
in the limit.

Level 6: Stability

Let (M, g) be a smooth closed 3-manifold, ω ∈ R, a, q,m0,m1 > 0 be positive
real numbers and S ∈ C∞

R (M) be a smooth real-valued function. Let (aα)α be a
sequence converging to a, (mα)α be a sequence converging tom1, (ωα)α be sequence
converging to ω, p ∈ (4, 6] and (Sα)α be a sequence in C∞

R which converges to S

in C1,θ
R as α → +∞ for some θ ∈ (0, 1). Assume the critical condition (8.1) when

p = 6. Let (uα, vα, Aα)α, uα > 0, be a sequence of solutions of
ℏ2

2m2
0
∆guα +Φα(x, vα, Aα)uα = upα−1

α

a2∆2
gvα +∆gvα +m2

1vα = 4πqu2α
a2∆2

gAα +∆gAα +m2
1Aα = 4πqℏ

m2
0
Ψ(Aα, Sα)u

2
α .

(9.6)

We aim to prove that, up to passing to a subsequence, uα → u, vα → v in C2
R and

Aα → A in C2
V as α→ +∞, for some u, v ∈ C2

R and A ∈ C2
V which solve (BPSP )a

with the additional property that if am1 <
1
2 , then we also have that u > 0 and

v > 0 in M . We will be very sketchy here. We start with some control estimate
on the uα’s. We divide the first equation by uα and integrate. There holds that∫

∆u
u ≤ 0 and by the estimates in Levels 1 and 2 there holds that∫

Φα ≤ C(1 + ∥uα∥2L2
R
) .

Then ∫
M

upα−2
α dvg ≤ C

(
1 + ∥uα∥2L2

R

)
for all α, where C > 0 is independent of α. Then, since p > 4, the uα’s are
bounded in L2

R and with this little control on the uα’s we can prove that the Φα’s

are bounded in C0,θ
R for some θ ∈ (0, 1). Then the proof of the stability in the

subcritical case p < 6 essentially follows the Gidas-Spruck [17] arguments based on
elementary blow-up and the fact that the equation ∆u = up−1 does not have any
nontrivial solution in R3 when p is subcritical.
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In the critical case p = 6 the situation is more involved, the point being that
the equation ∆u = u5 now has plenty of solutions in R3 (the extremals for the
Sobolev inequality, see Aubin [3] and Talenti [38]). We use here the 3-dimensional
particularity (this essentially goes back to Schoen [32], Li-Zhu [28], Marques [30],
Druet [12, 13]) that blow-up points are always isolated. A priori we could have
cluster’s type configurations for the uα’s (groups of bubbles interacting one with
another). It turns out that, in dimension 3, such clusters never occur and we
always have in dimension 3 configurations with a repetition of single bumps. Then
the blow-up analysis implies that we do have bounded energy and we recover a well
defined H1-Struwe [37] type decomposition for the uα’s, meaning by this that we
recover well defined blow-up points for the uα’s. Moreover, it turns out (as we just
mentioned) that these blow-up points are isolated.

Coming back to Levels 1 and 2 we get more control on the Φα’s and we can
branch on the Schoen [32], Li-Zhu [28], Druet [12, 13], Marques [30], Druet-Hebey-
Robert [14] . . . advanced analysis for blow-up which gives C2-convergence as soon

as the limit operator for ℏ2

2m2
0
∆g +Φα is coercive and has positive mass (a reference

in book form is Hebey [20]). The limit operator here is

ℏ2

2m2
0

∆g +Φ ,

where Φ = ℏ2

2m2
0
|∇S|2 + ω2. This is clearly a coercive operator when ω ̸= 0 or S is

not constant. By the critical condition in the theorem

2m2
0

ℏ2
Φ < Λg ,

and since Λg has nonnegative mass, the maximum principle gives that the limit
operator has positive mass. When ω = 0 and S is constant, we use a blow-up

property of the Green’s function Gα :M ×M\D → R of ℏ2

2m2
0
∆g +Φα, namely that

Gα blows up in the sense that infM×M\D Gα → +∞ as α→ +∞. Then, again, we
can conclude with arguments as in Hebey and Wei [25].

When a → 0 in (BPSP )a many of the estimates above are lost and we need to
rebuild the whole theory on A(u) and v(u) and make the estimates independent of
a. This leads to new difficulties. The analysis is carried over in Hebey [22].
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